《两步应用题》教案(最新17篇)

圆圆 分享 时间:

通过情境创设与分步分析,培养学生解决实际问题的能力,提升逻辑思维与计算能力,如何引导学生理解题意?以下由阿拉网友整理分享的《两步应用题》教案相关范文,供您学习参考,希望对您有所帮助!

《两步应用题》教案

小学数学应用题教学教案 篇1

教学目标:

1、学生能够理解从一个数里减去两部分应用题的数量关系,以及掌握这类应用题的解答方法。

2、 学会从不同的角度思考问题

3、充分感觉到数学与生活的关�

今天早晨我出门的时候,一共带了50元钱。

我先从家里出发,打面的到车站花了4元钱。

然后我又用了3元钱乘车到旧县。

(教师简要板书)

二、解决可能遇到的生活问题

师:根据我提供的这些信息,你能提出哪些数学问题?

生:虞老师打面的和坐公交汽车一共花了多少钱?

生:虞老师到旧县后还剩多少钱?

生:虞老师打完面的后还剩多少钱?

生:坐面的比坐公共汽车多用多少钱?

师:这个问题还可以怎么问?

生:坐公共汽车比做面的少用多少钱?

师:还有其他问题?(学生表示没有了)大家提了这么多问题,一块儿解决不好办,咱们一个一个来解决,怎么样?

师:坐面的比坐公共汽车多用多少钱?谁来解决?

生:4-3=1(元)

师:谁求出老师到达车站后还剩多少钱?

生:50-4=46(元)

师:谁能求出虞老师打面的和坐公共汽车一共花了多少元?

生:4+3=7(元)

师:那么,老师到达旧县后还剩多少钱?这个问题挺难的,你会吗?

三、自主探索求解新知的途径

1、第一次尝试

师:请小朋友们先在练习本上独立完成,然后小组内交流自己的做法。

(学生尝试练习,教师巡视搜集信息。

小组内交流讨论,为全班交流进行准备)

师:哪个小组愿意讲讲你们的做法?

生:我们先求出了虞老师打面的和坐公共汽车一共花的钱

数:4+3=7(元)。

又用总钱数减去了一共花的钱数:50-7=43(元)。

生:我们先用总钱数减去老师打面的的花的4元:50-4=46(元)。

然后再减去做公共汽车花的3元钱:46-3=43(元)

生:我们的想法和第一小组一样,但我们用的是综合算式:

50-(4+3)=43(元)

2、第二次尝试:

教师出示题目:

虞老师到华地百货用40元钱买了30本笔记本。

准备奖励给遵守纪律的小朋友9本,学习认真的小朋友11本。

虞老师还剩多少本笔记本?

(学生独立解答,集体订正时学生可以相互讨论)

师:对咱们解决的这两个实际问题进行比较,你发现它们有哪些共同点?(学生充分发表个人意见)

四、完善认知、释放潜能

师:小朋友们算算买了笔记本后,虞老师还剩多少钱?

生:43元减去笔记本的40元,你还剩3元钱。

师:3元钱够我从旧县回家吗?

生:(嚷嚷)不够了!光打面的就的用4元钱了!

师:(很着急)那怎么办呢,我总不能走回家吧?你们能帮我想个办法吗?

(学生议论纷纷,情绪高涨,一会儿不少学生举起了手)

生:老师,你别走了,今天住我家吧。

(学生和老师都笑了)

师:谢谢你啊,但老师回家得干活啊,所以不能住外面的。

生:老师你可以到了溧阳城里不打面的。

早晨你是怕迟到,但放学晚一点回家没关系啊。

师:这个办法太好了!你真是太聪明了!

师:这节课小朋友们用学到的知识帮助虞老师解决了这么多实际问题,真得谢谢你们了!

应用题教案 篇2

教学目的

1.通过解答一组相关的应用题,使学生进一步理解复合应用题是怎样在简单应用题的基础上发展起来的.

2.使学生进一步掌握分析应用题的方法,进一步提高学生分析和解答应用题的能力.

3.培养学生认真负责的态度和良好的学习习惯.

教学重点

能够掌握复合应用题的结构,正确解答复合应用题.

教学难点

使学生掌握复合应用题的关系.

教学过程

一、基本训练.

1.口算.

×4 127+28 + 88÷16

+ ÷ ×8 -

2.要求下面的问题需要知道哪两个条件?

(1)实际每天比原计划多种多少棵?

(2)桃树的棵数是梨树棵数的多少倍?

(3)五年级平均每人捐款多少元?

(4)这堆煤实际烧了多少天?

(5)剩下的。书还需要多少小时能够装订完?

(6)小明几分钟可以从家走到学校?

教师总结:

应用已经学过的数量关系,根据题目中的问题考虑需要哪两个直接条件,是我们分析和解答简单应用题的关键.

二、归纳整理.

揭示课题:这节课,我们复习复合应用题(板书课题).

(一)教学例2:

a.学生夏令营组织行军训练,原计划每小时走千米;实际每小时走千米.实际比原计划每小时多走多少千米?

b.学校夏令营组织行军训练,原计划3小时走完千米;实际每小时走了千米.实际比原计划平均每小时多走多少千米?

c.学校夏令营组织行军训练,原计划3小时走完千米;实际小时走完原定路程.实际比原计划平均每小时多走多少千米?

1.指名读题,学生独立解答.(学生板演)

2.小组讨论:这三道题都有什么联系?这三道题有什么区别?

联系:这三道题说的是同一件事,要求的问题也相同,都是求“实际比原计划平均每小时多走多少千米?”要求最后问题都需要先知道原计划每小时走的千米数和实际每小时走的千米数.

区别:

a、实际每小时走的和原计划每小时走的千米数都是已知的,只需要一步计算;

b、实际每小时走的千米数是已知的.原计划每小时走的千米数是未知的,需要两步计算;

c、实际每小时走的千米数和原计划每小时走的千米数都是未知的,需要三步计算.

3.教师质疑:对于不能一步直接求出结果的应用题,我们应该怎样进行分析呢?请你们以小组为单位试着分析b、c量道例题.

4.教师总结:从上面这组题我们可以看出,复合应用题都是由几个简单一步应用题组合而成的.在分析数量关系时我们可以从所求问题出发逐步找出所需要的已知条件,直到所需条件都是题目中的已知的为止.

5.检验应用题的方法.

我们想知道此题目做的对不对,你有什么好办法吗?

(1)按照题意进行计算;

(2)把所求得的问题作已知条件,按照题意倒着算,看最后结果是否符合题意.

三、巩固反馈.

1.解答并且比较下面两道应用题,说说它们之间有什么区别?

(1)时新手表厂原计划25天生产手表1000只,实际每天生产50只.实际比原计划提前几天完成任务?

(2)时新手表厂原计划25天生产手表1000只,实际比计划提前5天完成任务.实际每天生产手表多少只?

2.判断:下面列式哪一种是正确的?

(1)一个修路队要筑一条长2100米的公路,前5天平均每天修240米,余下的任务要求3天完成,平均每天要修多少米?

A:2100-240×5÷3 B:(2100-240)÷3

C:(2100-240×5)÷3

(2)一个装订小组要装订2640本书,3小时装订了240本,照这样计算,剩下的书还需要几小时才能够装完?

A:(2640-240)÷240

B:2640÷(240÷3)

C:(2640-240)÷(240÷3)

(3)一个机耕队用拖拉机耕公顷棉田,用了4天,照这样计算,再耕公顷棉田,一共需要用多少天?

A:÷(÷4) B:÷(÷4)÷4

C:(+)÷(÷4)

(4)一个筑路队铺一段铁路,原计划每天铺路千米,15天铺完,实际每天比原计划多铺路千米,实际多少天能够铺完这段路?

A:×15÷ B: ×15÷(-)

C: ×15÷(+)

(5)某化工厂采用新技术后,每天用原料14吨.这样,原来用7天的原料,现在可以用10天.这个厂现在比过去每天节约多少吨原料?

A:14×7÷10-14 B:14×10÷7-14

C:14-14×10÷7 D:14-14×7÷10

四、课堂总结.

通过今天的学习你有什么收获?

五、课后作业.

1.丰收农具厂制造一批镰刀,原计划每天制造360把,18天完成,实际每天多制造72把.照这样计算,多少天能完成任务?

2.边防战士巡逻,共行26千米.前小时在平路上行走,平均每小时行5千米;后来在山地行走,平均每小时行3千米.在山地行走了多少小时?

3.某化工厂采用新技术后,每天用原料14吨,这样,原来7天用的原料,现在可以用10天.这个厂现在比过去每天节约多少吨原料?

六、板书设计

复合应用题

学生夏令营组织行军训练,原计划每小时走千米;实际每小时走千米.实际比原计划每小时多走多少千米?

学校夏令营组织行军训练,原计划3小时走完千米;实际每小时走了千米.实际比原计划平均每小时多走多少千米?

-÷3

学校夏令营组织行军训练,原计划3小时走完千米;实际小时走完原定路程.实际比原计划平均每小时多走多少千米?

÷-÷3

应用题教案 篇3

教学目的

通过练习,使学生进一步掌握连除应用题的数量关系和解题方法,提高学生的计算能力和应用题的解题能力。

一、计算练习

做练习二十三的第5、6、11题

1、 第6题,让学生独立口算,共同核对得数。

2、 第6题,让学生独立笔算,填出得数,集体订正。

3、 第6题,第一行指名板演,并要求学生说说怎样估算,第二行全班学生在练习本上估算,指名口答得数,共同订正。

二、应用题解题练习

练习二十三的第7-10题及第12、14、15题

1、第七题,全班学生独立在练习本上解答,教师巡视,分别指名将两种不同的解法的综合算式抄在黑板上:

7200 ÷12÷ 6 7200 ÷ (12 ÷ 6)

=600 ÷ 6 =7200 ÷ 72

=100(箱) =100(箱)

让学生比较两种解法的不同。

2、第8题,先引导学生回顾除法应用题中常见的数量关系,然后再求。

3、第9、10题,先让学生读题,审题,比较两题的不同,第9题是连除应用题,第10题不是连除应用题。

4、 第12题,两道小题也要让学生对比着练,先让学生独立解答,然后指名说解法。

5、 第14、15题,让学生独立列出综合算式解答,集体订正。

三、应用题补充条件、问题练习

做练习二十三的第13、16题

1、 第13题,读题,明确条件,然后给予适当的启发。

2、 第16题,要求学生补充一个条件和一个问题,成为一道两步应用题;再补充另一个条件和问题,成为另一道两步应用题

3、 整理和复习

复习混合运算式题、文字题和连乘、连除应用题

教学内容

课本第116页的第1-3题;练习二十六的第1-4题

教学目的

1、 通过整理和复习,使学生进一步掌握含有两级运算的三步式题的运算顺序,能比较熟练地进行计算,并会列综合算式解答两步计算的文字题。

2、 使学生进一步理解连乘、连除应用题的数量关系,能比较熟练地解答这两种应用题,提高理解能力。

教学过程

一、复习混合运算

1、 混合运算式题

(1) 做课本第116页第1题及补充题

97-12× 6+43 29+187÷ 17-34

156-56÷ 4× 7 (350-275)×(19+25)

(2)做练习二十六的第1题

学生独立做,教师巡视,发现问题,集体订正。

(3)做练习二十六的第3题

左图是变化了形式的三步混合运算式题,右图是以框图形式出现的混合运算。让学生独立计算,指名说出亿时结果。

2、 两步计算文字题

做第116页的第2题

让学生说说每道题求什么,必须知道哪两个数,再引导学生列综合算式

做练习二十六的第2题

让学生独立列出综合算式计算,指名答出,共同订正。

二、复习连乘、连除应用题

1、 做课本第116页的第3题

让学生根据题意画线段图,教师巡视指导。

解答后,引导学生把它改编成用除法计算的两步应用题。

2、 练习二十六的第4题

让学生列综合算式解答,订正时,指名说说两小题的相同点和不同点以及综合算式的每一步求什么。教师归纳,指出解答连乘、连除应用题应注意的问题。

应用题教案 篇4

教学目标:

1、理解比较抽象的工作总量、工作效率、工作时间的数量关系,工程问题应用题。

2、掌握一般工程问题的结构特征。

3、学会解题方法,会正确解答一般的工程问题。

教学重点:

学会解题方法,会正确解答一般的工程问题。

教学难点:

理解比较抽象的工作总量、工作效率、工作时间的数量关系。

教学准备:

投影片。

教学过程:

一、复习准备:

1、口答,并说出数量关系式。

(1)甲乙合做60件产品,甲每天做3件,乙每天做2件。他们要几天完成?

60÷(3+2)=12天

工作总量÷工作效率=工作时间

(2)加工80个零件,甲用4小时完成。平均每小时加工多少个零件?

80÷4=20(个)

工作总量÷工作时间=工作效率

2、回答,说说你是怎么想的。

(1)加工一批零件,甲用4小时完成。平均每小时完成这批零件的几分之几?

1÷4=

(把工作总量看作“1”)

(2)一项工程,甲单独修建,需要4天完成,乙单独修建,需要8天完成。

①甲队独修,每天完成全工程的`( )。

②乙队独修,每天完成全工程的( )。

③两队合修,每天完成全工程的( )。

小结:刚才这几道题中,工作总量所以用“1”表示,因为工作总量不再是一个具体的数量,而工作效率是一个分数,这个分数实质上是单位时间完成了工作总量的几分之几。

二、教学新课。

1、出示例2.(小黑板)

一项工程,由甲工程队单独施工,需8天完成,小学数学教案《工程问题应用题》。由乙工程队单独施工,需要12天完成。两队共同施工需要多少天完成?

(1)审题后,想:这道题需我们求什么?你可以根据哪个关系式来解答?

(2)学生尝试做,并同桌交流。

(3)反馈说明。

1÷(+)=1÷(+)=1÷=4(天)

(把工作总量看作“1”,两队的工作效率就是+。)

教师:如果不把工作总量看作“1”,而是看作2、3、5、10……结果会怎样?

学生任选一个数列式计算。

小结:计算结果是一样的。不过看作“1”是最简捷、最常用的。

2、练一练。

(1)填空。

①甲做一项工作需5天完成,每天完成这项工作的( ),3天完成这项工作的( )。

②一项工程,甲队独做需要36天完成,乙队独做需要45天完成。两队合做,一天可以完成这项工程的( ),( )天可以完成。

(2)修一条公路,甲队独做需10天,乙队独做需15天,甲乙两队合做,几天可以完成?

(全班练,抽学生写在投影片上,同桌互说是怎么想的)

3、小结:四人小组讨论。刚才练的题有什么特点?我们是怎么解的?

教师:这就是我们今天学的工程问题。(出示课题)

三、巩固练习

1、变式练习

打印一份稿件,甲单独干要10小时,乙单独干要12小时,丙单独干要15小时。

(1)甲、乙、丙三人合打1小时,完成这份稿件的几分之几?

++=

(2)三人合打一小时后,还剩下几分之几?

1-=

(3)甲、乙、丙三人合干,几小时可以完成?

1÷(++)=4(小时)

(4)甲、乙两人合干5小时,可以完成这份稿件的几分之几?

(+)×5=

(四人小组交流,想想还可以提出哪些问题并解答。)

2、看书,质疑。

四、教学小结:

今天我们学习了什么?你是怎样来解答这些应用题的?

五、作业

《作业本》P70[67]

应用题参考教案 篇5

教学目标:

1、使学生初步理解相遇问题的意义。

2、使学生会分析相遇问题的数量关系和解题方法。

3、培养学生初步逻辑思维能力。

教学重点:相遇问题中数量关系的理解和解题思路的分析。

教学难点:解答问题时对速度和的理解和运用。

教具准备:演示软件、实物投影机、幻灯机。

教学过程

开场白:

同学们,过去我们已经学过一些有关行程问题的知识,今天,我们要在过去的知识基础上,把这个问题作进一步的研究,为更好地掌握新知识,现在我们把一些相关知识进行复习。

一、复习铺垫:?

口答:

1、张华每分钟走65米,走了4分钟,一共走了多少米

65×4=260(米)

提问:为什么这样求?谁会用一个数量关系式表示

在学生回答的同时板书:速度×时间=路程。并由学生说明:张华行走的速度是每分钟走65米,时间是4分钟,求一共走多少米?就是求张华所走的路程。

2、李诚每分钟走70米,走了4钟,

由学生补充问题并进行计算。

二、新授

1、导入新课:刚才我们复习了一般的求路程的行程应用题,它是由一个物体运动完成的。下面我们研究两个物体运动的行程应用题。

2、出示准备题:

①读题看演示,初步理解题意。

问:题中告诉我们,张华和李诚是怎样出发的?他们行走的方向又是怎样?(两人同时从家里出发,向对方走去)

板书:两地同时出发相向而行?

②边演示边带学生填写P58表格的数据,并分析数量关系。

这是他们两人走的时间和路程的变化情况表。我们看看1分钟的情况(演示1分钟的情况)教师问:张华1分钟走60米,李诚1分钟走70米,那么两人所走路程的和是多少?你是怎样算的?现在两人的距离是多少?怎样计算?下面请同学们按表中的四个要求填写2分、3分的路程变化情况。

学生翻开课本第58页填写。(教师巡视)

师生继续填写完这个表格,边演示边让学生回答2分、3分时的情况。填写完后,教师指表的第4列问:纵观此列,每经过1分钟,两人之间的距离有什么变化?(缩短了1个60+70米)当两人距离为0米时,说明两人相遇了,这时他们用的时间都是3分钟。板书:相遇。问:相遇时,两人所走路程的和与两家的距离有什么关系?(正好相等)。学生回答后板书:两人所走路程的和=两地间的距离。

3、小结并揭示课题?

像这样,两人从两地同时出发,相向而行,最后相遇,他们所走路程之和正好等于两地间的距离。我们称它为相遇问题。现在我们就学习解答相遇求路程的方法。板书课题:相遇应用题。

4、讲授例5。

①出示例5,教师读题,学生说出已知条件和问题。

问:小强和小丽是怎样运动的?(两人同时从自己家里走向学校)也就是从两地同时出发,相向而行,经过4分,两人怎样?(相遇在学校门口)

②启发学生学习第一种解法

演示后提问:a、小强小丽走的路程各是哪一段?用色段表示。

b、两人4分所走路程的和与两家相距的米数有什么关系?(正好相等)

c、要求两家相距多少米?可先求什么?(先求两人到校时各自走的路程)再怎样?(将它们合起来)就得出时各自走的路程)再怎样?(将它们合起来)就得出两家相距的米数。

指一名学生口述,教师板书:65×4+70×4?=260+280?=540(米)

问:65×4和70×4分别表示什么?为什么要相加?

③启发学生学习第二种解法。

问:这道题还有别的解法吗?让学生列式计算。

指一名学生口述,教师板书:(65+70)×4?=135×4?=540(米)

问:65+70求出什么?乘以4表示什么意思?请讲出你的解题思路。

相遇时,两人是否一共走了4个65+70米的路程呢?我们演示来验证一下。(演示)

④小结:相遇求路程的应用题通常有两种解法:一种是先求出两个物体各自走的路程再将它们合起来求得总路程,另一种是先求每分钟两人所走的路程的和,即是两人的速度和,再乘以相遇时间,就等于总路程。边说边板书:速度和×相遇时间=总路程,学生齐读关系式。?

⑤学生看第58页的例5。

三、巩固练习:

1。志明和小龙同时从两地对面走来,志明每分钟走54米,小龙每分钟走52米,经过5分两人相遇,两地相距多少米?(用两种方法解答)?

学生读题后,独立完成,教师巡视,订正答案。

2。两列火车从两个车站同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2。5小时两车相遇。两个车站之间的铁路长多少千米?

让学生自选一种方法解答。

3。两辆汽车同时从一个地方向相反的方向开出。甲车平均每小时行44。5千米,乙车平均每小时行38。5千米。经过3小时,两车相距多少千米?

出示题目,请一名学生读题,演示后由学生独立完成。

提问:两辆汽车同时从一个地方向相反的方向开出,也就说明两辆汽车背向而行,两辆汽车开出后有没有相遇?(没有)求经过3小时,两车相距多少千米?能用相遇问题的解法吗?(能)为什么?(因为甲乙两车每走1小时,两车之间的距离就拉开44。5+38。5千米的距离,3小时后,两车就拉开3个44。5+38。5千米的距离,也就是两车相距的米数。)

小结:当两个物体同时从一个地方背向而行,它们的结果是相距,两个物体所走的路程的和等于两地间的距离,同样可以用速度和乘以经过时间,求得相距路程。

4、思考题:甲、乙两列火车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地间的铁路长多少千米?

出示题目,全班读题,演示后让学生独立完成。

订正时,师说:求两地间的铁路长多少千米?可以把铁路分为两段,一段是甲开出1小时单独行驶的路程,另一段是两车2小时共同行驶的路程。

还有不同的解法吗?师生共同分析不同解法。

引深:如果甲车开出后2小时,乙车才开出,又该怎样列式呢?指一名学生列式。

四、课堂总结:

这节课我们学习了两个物体相向运动的行程问题,其中求路程的解答方法通常有两种:

一是先求出两个物体各自走的路程再将它们合起来求得总路程;

二是用速度和乘以相遇时间得总路程。

五、作业:

P61第1题,P62第12题。

应用题参考教案 篇6

教学内容:课本第54页例3以及相应的“做一做”,数学教案-相遇问题应用题。

教学要求:进一步提高学生分析应用题的能力,学会列综合算式解答相向运动求路程的应用题。

教学过程:

一、复习。

口答:

①. 一辆汽车从甲地开往乙地,平均每小时行30千米,5小时到达。可以求什么?怎样求?为什么这样求?

②. 甲乙两地相距150千米,一辆汽车从甲地开往乙地,需要5小时。可以求什么?怎样求?为什么这样求?

③. 甲乙两地相距150千米,一辆汽车从甲地开往乙地,每小时行30千米。可以求什么?怎样求?为什么这样求?

问:从以上三道题中可看出什么数量关系?

速度×时间=路程

二、新授。

1、导入新课。

刚才我们复习了一个物体运动的行程应用题,今天我们要来学习两个物体运动的行程应用题。两个物体运动的行程应用题比较复杂,比如出发地点、行车方向、出发时间是相同还是不相同,运动的结果又怎样呢?这些都是我们研究的内容。

出示准备题:

张华家距李诚家390米,两人同时从家里出发,向对方走去,张华每分走60米,李诚每分走70米。

390米

60米

60米

70米

70米

张华

李诚

问:题目中“同时”是什么意思?(出发时间一样)

出示下表,学生独立完成。

走的时间

张华走的路程

李诚走的路程

两人所走的路程和

现在两人的距离

1分

60米

70米

130米

260米

2分

120米

140米

260米

130米

3分

180米

210米

390米

0米

问:出发3分后,两人之间的距离又是多少?两人所走的路程的和与两家的距离有什么关系?(利用教具演示)

教师指出:像上面这样,运动方向是相向的、出发地点为两地的,出发时间的同时的,运动结果是相遇的,我们就把它称为相遇问题。现在我们就来学习相遇问题的应用题的解答方法。(板书课题:相向运动求路程的应用题)

2、教学例5:

小强和小丽同时从自己家里走向学校,小学数学教案《数学教案-相遇问题应用题》。小强每分走65米,小丽每分走70米,经过4分,两人在学校门口相遇。他们两家相距多少米?

①. 引导学生分析题意,说出已知什么,要求是什么?

教师利用教具演示,画出意图让学生观察、思考:

小强走的是哪一段?

小丽走的是哪一段?

他们到校所走的路程与两家相距的米数有什么关系?

要求两家相距多少米,先要求什么?(先求出两人到校时各走了多少米?)

怎样分步解答?(让学生口述每一步算的是什么,说出算式,教师板书。)

65×4=260(米)

70×4=280(米)

260+280=540(米)

怎样列综合式?(学生口述,并算出结果,教师板书。)

65×4+70×4

=260+280

=540(米)

答:(略)

②. 再引导观察示意图,启发另一种解法。

问:他们两人每走1分,他们之间的距离靠近了多少米?[ 65+70=135(米)]到校时经过了几分?(4分)要求两家相距多少米,还可以怎样算?怎样分步解答?(学生口述,教师板书:

65+70=135(米)

135×4=540(米)

综合式:

(65+70)×4

=135×4

=540(米)

③. 引导学生比较两种解法。

65×4+70×4 (65+70)×4

想一想:第一种解法是先求什么,后求什么?第二种解法是先求什么,后求什么?

议一议:这两种解法的综合算式不同,为什么得数一样?它们之间有什么联系?

哪一种算法比较简便?

④. 小结相向运动求路程应用题的特点和解题方法:速度和×相遇时间=相遇路程

三、巩固练习。

1.指导看书第58、59页,后练习第59页的做一做。

2.看算式把条件或问题补充完整。

①. 小明和小华同时从大桥的两端相向走来,小明每分走50米,小华每分走60米,经过5分两人相遇。 ?算式:(50+60)×5

②. 甲乙两位同学骑自行车从东西两站

甲同学每小时行20千米,乙同学每小时行25千米, ,东西两站相距多少千米?算式:(20+25)×3

3.课本练习十四第1、2、3题。

应用题参考教案 篇7

教学目标

1、使学生学会用方程方法和算术方法解答两步计算的分数一般应用题、

2、培养学生分析、解答两步计算的的能力和知识迁移的能力、

3、培养学生的推理能力、

教学重点

培养学生分析、解答两步计算的的能力

教学难点

使学生正确地解答两步计算的分数一般应用题、

教学过程

一、复习引新

(一)全体学生列式解答,再说一说列式的依据、

两地相距13千米,甲乙二人从两地同时出发相向而行,经过2小时相遇,甲每小时行5千米,乙每小时行多少千米?

132-5

=-5

=(千米)

根据:路程相遇时间-甲速度=乙速度

(二)教师提问:谁来说一说相遇问题的三量关系?

速度和相遇时间=总路程

总路程相遇时间=速度和

总路程速度和=相遇时间

(三)引新

刚才同学们练习题分析解答得很正确,现在老师把这道道中的已知条件改变一下,看看你们还会解答吗?(将2小时改为 小时)

二、讲授新课

(一)教学例1

例1、两地相距13千米,甲乙二人从两地同时出发相向而行,经过 小时相遇、甲每小时行5千米,乙每小时行多少千米?

1、读题,分析数量关系、

2、学生尝试解答、

方法一:解:设乙每小时行 千米、

方法二: (千米)

3、质疑:观察这道例题和我们以前学过的应用题有什么不同?在解答时,两种解法之间思路上有什么不同?

相同:解题思路和解题方法相同;

不同:数据不同,由整数变成分数、

4、练习

甲、乙两车同时从相距90千米的两地相对开出, 小时后两车在途中相遇,甲车每小时行60千米,乙车每小时行多少千米?

(二)教学例2

例2、一个水果店运一批水果,第一次运了50千克,第二次运了70千克,两次正好运了这批水果的 ,这批水果有多少千克?

1、学生读题,分析数量关系,并根据题目中的已知条件和所求问题找到等量关系、

由此得出:一批水果的重量 第一次+第二次

2、列式解答

方法一:解:设这批水果有 千克

方法二:

3、以组为单位说一说解题的思路和依据、

4、练习

六年级一班有男生23人,女生22人,全班学生占六年级学生总数的 、六年级有学生多少人?

三、巩固练习

(一)写出下列各题的等量关系式并列出算式

1、甲、乙两车同时从相距184千米的两地相对开出, 小时后两车相遇,甲车每小时行33千米,乙车每小时行多少千米?

2、打字员打一部书稿,每一天打了12页,每二天打了13页,这两天一共打了这部书稿的 、这部书稿有多少页?

(二)选择适当的方法计算下面各题

1、一根长绳,第一次截去它的 ,第二次截去 米,还剩7米,这根绳子长多少米?

2、甲、乙二人分别从相距22千米的两地同时相对走出,甲每小时行3千米,乙每小时行 千米,两人多少小时后相遇?

四、课堂小结

今天我们学习的和以前所学的知识有什么联系?有什么区别?

五、课后作业

1、商店运来苹果4吨,比运来的橘子的2倍少 吨、运来橘子多少吨?

2、一套西装160元,其中裤子的价格是上衣的 、上衣和裤子的价格各是多少元?

六、板书设计

例1、两地相距13千米,甲乙二人从两地同时出发相向而行,经过

小时相遇、甲每小时行5千米,乙每小时行多少千米?

例2、一个水果店运一批水果,第一次运了50千克,第二次运了

70千克,两次正好运了这批水果的 ,这批水果有多少千克?

解:设乙每小时行 千米

答:,乙每小时行 千米、

解:设这批水果有 千克

答:这批水果有480千克、

教案点评:

教学程序安排紧凑,教学方法得当,语言简炼,重点突出,整体安排符合学生认知规律,适合儿童特点。

《两步应用题》教案 篇8

教学目的:

1.学生通过观察、探究、研讨等活动,初步认识多(少)几求和、几倍求和(差)的两步应用题的结构,掌握这类应用题的分析方法,并会分步列式解答。弄清含有两个已知条件的一步应用题与两步应用题的联系和区别,加深学生对两步应用题的理解。

2.初步培养学生主动探索、独立获取知识的能力,提高学生分析处理信息和解决简单实际问题的能力。

3.渗透数学来自于生活实践的思想,培养学生初步的数学应用意识和实践能力。

教学重点:两步应用题的分析思路和方法。

教学难点:理清数量关系,找出中间隐藏的条件。

教具、学具准备:多媒体课件一套。

教学过程:

一、呈现材料,提出问题:

1.出示课件,师:春天来了,小动物们都出来活动,看!森林里有一群小兔子,它们也出来找吃的了。

出示:白兔5只,黑兔比白兔多5只。

2、问:

(1)从图中你看到了什么?你得到了哪些数学信息?(生汇报)

(2)你是怎样理解这些数学信息的?(学生分析黑兔比白兔多5只的含义)

(3)信息中的数量有直接关系吗?你怎么想的?

(4)你根据这些信息,能提哪些数学问题呢?(学生说,师用黑板条出示)

①有5只白兔,黑兔比白兔多5只。黑兔有多少只?

②有5只白兔,黑兔比白兔多5只。两种兔共有多少只?

(5)这些问题中,哪个一步能解决?哪个不能一步解决?(生说)

3、明确要研究的问题:

那我们就一起来研究这个问题,师指②

二、合作探索,研究问题:

1、这道题应该怎样分析呢?在小组内试着分析一下。

学生在小组内用不同方法分析(线段图、从条件入手、从问题入手)

教师巡视、指导。

2、小组汇报分析方法:

(1)哪个小组先来说说你们是怎样分析这道题的?

生:我们组是用画线段图方法来分析的。

师:那好,请你到前面边画图边分析,好吗?

白兔

5只共?只

黑兔

多5只

(2)师:他们组是用画线段图的方法来分析的。其他组的同学又是怎样想的呢?

生:我们组是从条件入手分析的。

师:你能分析吗?指名分析。

师:他是从条件入手分析的,他分析的多完整呀!

(3)师:还可以怎样分析呢?

生:我是从问题入手分析的。指名分析。

师:他分析的真准确。谁还能用这样的方法再来分析一遍。

指名两人分析。

3、 解决问题:

(1)能把你们的想法用算式表示出来吗?学生自己列式解答,教师巡视、指导后进生。

(2)指名板演:

① 黑兔有多少只?5+5=10(只)

② 两种兔共有多少只?10+5=15(只)

(3)指名讲解,师追问:为什么第一步要先求黑兔的只数?也就是说黑兔的只数是解决两种兔共有多少只的什么?(中间问题)

谁再说说解决两种兔共有多少只的中间问题是什么?

4、 讨论比较:

大家观察比较一下第①和②小题,看这两道题有什么相同点?有什么不同点?

学生充分讨论,认识到:这两道题的条件相同,问题不同,所以解答方法不同。第(1)题只需一步解答;

第(2)小题却要分两步计算,问:在解答过程中,哪个条件用了两次?为什么用两次?其中黑兔的只数用了两次,即含有两个已知条件的两步应用题。(板书课题)

三、联系实际,巩固提高:

1、求异拓展:

小兔子们又给我们提出一个新的问题。

出示线段图:

白兔

5只 共?只

是白兔的2倍

黑兔

(1) 你先看图说说图意、指名说。

(2)你能分析解答这道题吗?自己分析、解答。

(3)指名分析、解答。师追问:解决共有多少只的中间问题是什么?哪个条件用了两次?为什么用两次?

2、开放练习,灵活组合:

小兔子们看同学们这么聪明,给我们带来了一些礼物。快看看是什么?

出示:

① 海棠花12盆;②杜鹃花比芦荟多10盆。③茉莉花的盆数是海棠花的3倍;

④芦荟8盆;⑤月季花比海棠花少6盆;⑥蝴蝶兰的盆数是芦荟的2倍。

师:你知道海棠花的盆数是月季花的多少倍吗?

自己分析解答;指名汇报。

你能提出用两步解答的问题吗?自己提问题、解答。

四、总结收获:

1、 你有什么收获?

2、比较归纳,揭示规律。

师问:今天学习的应用题从结构上有一个共同的特点是什么?� )

五、课外实践作业:观察和调查自己身边的一些事物,应用本节学到的本领,编成两步计算的数学问题,并解答出来。

六、板书设计:

含有两个条件的两步应用题

① 有5只白兔,黑兔比白兔多5只。黑兔有多少只?

5+5=10(只)

② 有5只白兔,黑兔比白兔多5只。两种兔共有多少只?

白兔 ①黑兔有多少只? ①黑兔有多少只?

5只 共?只 5+5=10(只) 52=10(只)

黑兔 ②共有多少只? ②共有多少只?

多5只 10+5=15(只) 10+5=15(只)

应用题教案 篇9

南 京 市 铁 心 桥 中 心 小 学 课 堂 教 学 教 案       课题应用题复习内 容P1~2第7~13题教学目标认知: 使学生进一步认识周长和面积的意义,并能正确计算。进一步掌握分析应用题的方法,理解思路能正确的解答能力:提高学生解答应用题的能力。情感: 培养学生勤动脑的好习惯。重  点掌握分析应用题的方法, 难  点掌握分析应用题的方法, 理解思路能正确的解答理解思路能正确的解答教学方法 练习法谈话法  教    学    程     序     设     计电教应用学 生活 动教 师 活 动                       学生听讲    先测量,再计算。然后口答    读题口答独立练习一、揭示课题上节课,我们主要复习了计算题,这节课我们一起复习长方形,正方形周长和面积的计算,并重点复习两步计算应用题。(板书) 二、复习周长和面积1、问:什么是一个图形的周长?什么叫面积?书本的封面是什么形状?指出它的周长。摸摸它的面积。2、做书上P1页的第7题。 三、复习应用题1、做书上P2第8题(1)问(1)要求20小时可以采煤多少吨,可以怎样想?(2)指名板演,其余学生做在练习本上。(3)集体订正教    学    程     序     设     计电教应用学生 活 动教师 活 动                                         读题口答独立练习    学生听讲    读题口答独立练习       学生听讲     读题口答独立练习2、做书上P2第8题(2)(1)    学生读要求(2)    指名口头编题(3)    学生尝试练习,集体订正。问:这两题是用什么方法来分析的,分别先算什么?再算什么?指出:解答两步计算的应用题有时候可以从问题开始,想所求问题的数量关系,找出需要的条件,确定先算什么,再算什么。 3、做书上P2第9题(1)(2)(1)    指名看问题找条件(2)    列出综合算式(3)    这两个问题都是先求什么?(4)    这两题在解题方法上有什么相同和不同,为什么不同?4做书上P2第11题谁能说说这题可以怎样想?问:这题是用什么方法来分析的?找出先算什么?再算什么?指出:解答两步计算的应用题,有时候还可以从条件想起,根据有联系的条件确定先算什么,再根据中间问题和另一个条件算出结果。5做书上P2第12题(1)    请同学们按照刚才的分析方法,想想怎样解答,在练习本上列式(2)    你是怎样解答的?(3)    问:还可以怎样想?四、课堂小结五、作业 1、P29、122、10、13  教    学    程     序     设     计电教应用 学 生 活 动教 师 活 动                            板 书 设 计应用题复习 条件    综合法   问题        问题  分析法  条件 连乘应用题                归一应用题 连除应用题                归总应用题教 学 后 记

应用题教案 篇10

教学内容:练习二十一第9-12题。

教学目标:认识和解答先求两个数的总数(或几个相同加数的和),再求它与另一部分的相差数(或和,倍数)的两步计算应用题。

教学重、难点:会用分析法思路分析这类应用题,提高分析推理和举一反三的能力。

教具准备:小黑板

教学过程:

一、基本练习:

1、出示:

(1)学校卖了15个足球,还买了4盒皮球,每盒6个,足球和皮球一共买了多少个?

(2)学校买了15个足球,还买了4盒皮球,每盒6个,足球比皮球少买了多少个?

(1)学生读题

(2)思考:这两题有什么相同的地方?有什么不同的地方?

(3)学生板演,其余学生做在自备本上。

集体订正时,学生说说先算什么?再算什么?

2、:解答两步应用题,可以看问题,想需要的条件,确定先要求的中间问题,求出中间问题后,再根据求题里问题的数量关系,求出题目的结果。

3、出示

(1)红花比黄花多多少朵?

(2)花和黄花一共多少朵?

(3)红花朵数是黄花的多少倍?

让学生说出问题的数量关系式。

4、揭示课题:

我们根据看问题想条件的方法,可以找到所求问题的数量关系,确定要先求什么,再求什么,要怎样算。这节课,就用这样的方法,继续练习两步计算应用题。

二、发展题练习

(一)1、出示:

少先队员种了24棵蓖麻,还种了2行向日葵,每行4棵。

1、学生读题,思考:这题有几个条件?

2、缺少一个什么?(问题)

3、讨论:可以提出哪些问题?

4、学生列式解答,并说说先算什么?再算什么?

(二)第98页第10题

1、学生读题

2、思考:要求“楼上的座位比楼下少多少个?”必须知道哪两个条件?

3、学生列式解答。

(三)书第98页第12题

1、学生说图意

2、图中告诉我们哪些条件?

3、思考讨论:

(1)戴眼镜男孩和扎辫子女孩各用了多少钱?必须要知道哪些条件?

(2)要求戴帽子男孩付了50元,应找回多少元,必须先算什么?

三、作业:第98页第11题。

应用题参考教案 篇11

两步加减法应用题

教学内容:两步加减法应用题

教学目标:通过教学,使学生掌握两步计算应用题的结构特征,并能正确列式计算。

教学重难点:使学生能正确掌握解题思路。

教学准备:多媒体课件。

课前谈话

师:小朋友你们喜欢六月吗?……

刚刚听了这么多的小朋友发言,老师真是替六月感到高兴因为有这么多的小朋友喜欢他。

一情境引入

师:刚才同学们都说了喜欢六月,其实老师也喜欢六月,你知道为什么吗?

……

天气热了,我们可以吃……,

那我们小朋友在学校里能不能吃冷饮?(不能)

那我们靠什么来解渴呢?对呀,可以喝纯净水。

师:我们小学的小朋友一天大约可以喝掉几桶纯净水?

那我们想想看,明天送水的叔叔会给我们小学送来多少桶纯净水呢?现在老师再告诉你,我们小学原有纯净水某某桶。

师:看着这三句话,你想到了什么?

(如果没有人说出来的话,教师可以这样引:那如果根据这三个条件,请你编应用题的话,你打算怎么编呢?)

二、新授课

(一)、根据情境编题并解答。(例题)

学生四人小组进行编题。

反馈。

教师根据学生的回答,把题目补充完整。

请学生把题目齐读一遍。

师:看到这道题目,你打算怎么来做呢?

……

师:刚才有些小朋友都谈了自己的一些想法,那我们来看题。

师:根据一、二两个条件我们可以求什么?(板书:吃了某某桶水之后,还有多少桶水。)算式会列吗?请写在自己的草稿纸上。反馈,并且提问算出来的数表示什么,你为什么用减法来做?

师:那么根据第三个条件我们又可以求出什么?(板书:现在有纯净水多少桶?)

算式怎么列,请写在自己本子上。反馈,并且提问算出来的数表示什么,你为什么用加法来做?

师:这道题目做好了没有?还漏了什么?集体口答一遍。(板书:现在有纯净水某某桶。)

师:刚才我们小朋友一起把这道题给做出来了,那哪位小朋友来回忆一下,刚才这道题目我们是怎样做的?

(二)看图编应用题并解答。(尝试)

1、师:我们有些小朋友呀嘴特别的馋,在学校里喝纯净水觉得还不解渴,放学一回到家里之后,就去开冰箱,小朋友猜猜看,他会去干嘛?

师:老师这里就有一些棒冰,

那你想一想,这题该怎样编成应用题呢?

(几个同学反馈之后,同桌在互相讲一讲。)

教师出示题目(小明家原有棒冰11根,买来了8根之后又吃掉2根,现在有棒冰多少根?)请小朋友齐读一遍。

师:这题你打算怎么做呢?

师:这题是用几步计算的?想一想第一步应算什么?

学生自己做题,教师巡视。

反馈。并及时提问:第一步算出来表示什么,为什么用(加或减)来做,第二步算出来表示什么,为什么用(加或减)来做?

2、刚才有些小朋友编了另外的题目,请看(小明家原有棒冰11根,吃掉2根后,又买来了8根,现在有棒冰多少根)

师:这题你们会不会做呢?(学生独立做题,反馈并适当的提问。)

(三)直接做文字应用题(加强练习)

师:我们出了喝纯净水、冷饮解渴之外,还有没有其他的东西来解渴?(引出水果)

老师这里就有许多的水果,我们要不要去看一看。(出示水果图,有超级连接)

师:有这么多的水果我们先看哪种水果呢?

(题目:1 商店有苹果67千克,卖出32千克后又运来50千克,现在有苹果多少千克。

2 超市原有西瓜50个,又运来32个之后卖掉了48个,现在超市有西瓜多少个?)

(四)编题

A 12+5-8

师:刚才我们做了几题有关水果的题目,那你能不能根据这个算式也来编几题算式?

B 任意编题。

师:如果连算式都没有的话,你还能不能编这样的应用题?

三、总结并出示课题

师:刚才我们编的题目都有一个什么特点?(板书:两步应用题)

它们都是用什么方法来做的?(补充:加减法)

师:这个就是我们今天学习的内容:两步加减法应用题。

四、发展题

师:课的一开始小朋友都说了,六月里有六一儿童节,所以小朋友都很喜欢六月,那你们知道九月十日是什么节吗?

师:老师这里就有两位小朋友他们打算买鲜花送给老师,表达自己对老师的尊敬,请看:教师节那天,小红和小明分别买了6朵花,两人一共送给李老师4朵花,问他们一共还剩下多少朵花?

应用题教案 篇12

活动领域:

数学活动

活动内容:

我会编加法应用题

教案目的:

1、能根据范例和自己的已有经验,知道加法应用题讲一件事,说两个数字,问一个问题。

2、能看实物、图片或情景,初步学会仿编9以内的加法应用题。

3、能够用不同的方法解答9以内的加法应用题。

教案准备:

1、图卡:红花,黄花;加法算式卡片。

2、教学挂图一张。

3、各种实物若干。

教案流程:

一、准备活动:拍手游戏

老师说:“小朋友,告诉我,8可以分成2和几。”生答:“8可以分成2和6。”接着问:26等于几,生答。

二、激趣引入:出道题来考考你。

1、谈话交流,让小朋友帮助中班的小朋友解决问题,出示例题。

“小明做了5朵红花,4朵黄花,一共有几朵花?”

2、应用题的结构。这道题讲了一件什么事?告诉我们几个数?还问了什么问题?请幼儿思考并回答问题,感知应用题的结构:要说一件事,2个数,还要问一个问题。三、接龙游戏:大家来编题。

1、出示小鸡图,老师讲事情,请幼儿提一个问题。

2、老师出示实物2支短铅笔,3支长铅笔,幼儿看着说一件事,并说出两个数,可由老师提问。

3、幼儿两人一组,一人编实物,一人提问。

三、操作活动:看题卡编应用题(题卡上有算式,还画有实物)

1、教师引导,看题卡如:23=?编一道关于铅笔的应用题。

2、同桌的'小朋友合作,看手中的题卡,一人说条件,一人问问题,然后交换提问。

3、幼儿反馈信息。

四、我编你算

看图上不同的东西编出不同的加法应用题。幼儿两两结伴,一人编应用题,一人在横线上列算式。

应用题教案 篇13

教学内容:教材第11——12页。

教学目标:

使学生掌握三位数连除应用题的结构,能够正确列式解题。

学生自主探索三位数连除应用题的解题方法,出解题规律。

教学重难点:理解这类应用题的结构,正确进行解题。

教学具准备:小黑板、挂图

教学过程:

一、复习旧知

1、口算

40÷560÷580÷5

100÷545÷348÷4

46÷2420÷7

2、笔算

654÷3498÷8555÷6

768÷9368÷4490÷8

二、新授

1、揭示课题

今天这节课我们学习三位数的连除应用题,板书课题。三位数的连除应用题。

2、出示例题

有两个书架一共放了224本书,每个书架有4层,平均每个书架每层放多少本书?

方法1、224÷2=112(本)

112÷4=28(本)

方法2、4×2=8(层)

224÷8=28(本)

①教师指着方法1指名回答:你是如何想的,说出你的思考过程,

224÷2=112(本)这道算式是什么意思,

112÷4=28(本)又是什么意思?

②教师指着方法1指名回答:你是如何想的,说出你的思考过程,

4×2=8(层)这道算式是什么意思,

224÷8=28(本)又是什么意思?

③指名回答刚才这题的思考过程。

三、巩固练习

1、想想做做的第1题

全班校对。

2、想想做做的第2、3题

四、全课

五、布置作业

想想做做的第4——7题

应用题教案 篇14

活动目标

看图编5以内的口头应用题。

能用加号、减号、等号列算式。

活动准备

经验准备:幼儿已认识加号、减号、等号。

课件准备:“我来列算式”组图。

纸面教具:《我会编应用题》。

活动过程

操作课件,鼓励幼儿看图说话,用“一共”编加法应用题。

——山顶游乐场开张了,熊猫奇奇约上小伙伴们一起去玩,我们也去看看吧。

1、操作课件,鼓励幼儿说说画面内容。

——奇奇最先跑进游乐场,他在玩什么?接着谁来了?你能完整地描述吗?

——如果把图上的内容编成一道加法应用题,应该怎么说?

小结:旋转木马上有1个小朋友,又来了2个小朋友,一共有3个小朋友。

2、操作课件,引导幼儿用“一共”编加法题。

——山顶游乐场真好玩呀,还有谁来玩呢?请你看图说一说。

——你能用“一共”,把图上的内容编成一道加法题吗?

小结:“一共”是合起来,加起来的意思。我们可以用一共来表达两个部分加起来,编写加法应用题。

操作课件,鼓励幼儿看图说话,引导幼儿用“还剩”编减法应用题。

1、操作课件,鼓励幼儿说说画面内容。

——滑滑梯上原来有几个小朋友?后来发生了什么变化?你能完整地描述吗?

——如果把图上的内容编成一道减法题,应该怎么说?

小结:滑滑梯上原来有3个小朋友,1个滑下来了,滑滑梯上还剩2个小朋友。

2、操作课件,引导幼儿用“还剩”编减法题。

——小伙伴们在玩什么呢?谁不玩走了呢?请你看图说一说。

——你能用“还剩”,把图上的内容编成一道减法题吗?

小结:“还剩”说明原来有的人或物品变少了、减少了。我们可以用还剩表示剩下来的人或物品的数量,编写减法应用题。

出示组图“我来列算式”,引导幼儿用算式表示图片内容。

——这些是什么符号?(运算符号)

——刚才我们用口编应用题的方法描述了这些图片,其实还有一个很趣的方法也可以表达图片上的内容,猜猜是什么?(数学、列算式)

——加号/减号/等号表示什么?(合起来/减少了/结果)

——请你根据图片内容,正确选择运算符号把算式补充完整吧。

——说说你列的算式,它表达了什么意思呢?

小结:加号和等号用来列加法算式,表示两部分数量合起来的结果。减号和等号用来列减法算式,表示总数减去一部分数量的结果。

发放纸面教具《我会编应用题》,鼓励幼儿看图口编应用题并列算式表示。

——太阳快下山了,小伙伴们离开了游乐场,看看他们做了什么呢?

——请先试着把画面内容编成一道应用题,再列算式表示。

——请你和旁边的小伙伴说说你编的应用题,互相检查所列的算式是否正确。

活动延伸

家长可以利用身边的实物,如水果、积木等,和幼儿玩口编应用题的游戏,并鼓励幼儿列算式表示。

应用题教案 篇15

教学内容:第86、87页例2,练一练,练习十九第1-5题。

教学目标:

1、认识连续比较是两步计算应用题的结构、初步学会解答这类应用题。

2、初步掌握用综合法分析应用题的方法。

教学重、难点:掌握应用题的结构,学会解答应用题的方法。

教具准备:小黑板

教学过程:

一、复习准备:

1、口头提问题:

(1)面粉28千克,大米比面粉少5千克,?

(2)班级图书柜里有科技书20本,故事书是科技书的2倍,?

学生根据题的问题,口答算式。

2、教学准备题

(1)学生读题

(2)思考:这是一道怎样的应用题?

(3)先要提一个什么问题?为什么要提柏树多少棵?

(4)第一个问题怎样求?第二个问题呢?

3、引入新课

如果去掉刚才提的问题,你会解答吗?这就是今天我们要学习的两步计算的应用题。(板书课题)

二、教学新课

1、教学例2

(1)出示例2

①学生读题

②说说有哪些条件和问题?

③根据条件画线段图。

15棵

松树

6课

柏树

8棵

杨树

④求杨树有多少棵?就是求线段图上的哪一段?你会算吗?

⑤学生尝试解答

⑥思考:先算什么?再算什么?

15+6=21求的是什么?

21+8=29求的是什么?

⑦同桌互相说先算什么?再算什么?

⑧小结:这里的三个条件是连续比多少的,解答问题时,可以根据两个条件求出一个问题,再根据求出的结果和第3个条件求出题目的结果。

2、教学“想一想”

(1)把第一个条件改为

①柏树比松树少6棵

②柏树的棵数是松树的2倍

(2)学生尝试解答

(3)集体订正时提问:你是怎样想的?先算什么?再算什么?

3、比一比

讨论:

(1)这三道题在解题方法上有什么相同的地方和不同的地方?

(2)这三道题为什么都要先算柏树的棵数?

三、巩固练习

1、练一练第1、2题

(1)学生读题独立列式解答

(2)想:先算什么?再算什么?

2、练习十九第1题

⑴学生读题独立列式解答

⑵想:先算什么?再算什么?

四、作业:

练习十九2、3、4、5题。

应用题参考教案 篇16

教学目标:

1、让学生利用路程、时间、速度三者之间的关系,借助画示意图解以现实为背景的应用题。

2、让学生利用画图直观分析、探究发现、充分发挥学生的主体作用,学生在轻松愉快的气氛中掌握知识。

3、在教师引导下结合实际创造有趣的情景,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心。

4、在《小组竞赛学习法》督促下,逐步引导学生自学 , 使学生的被动学习变为主动学习。

教学重难点

重点:通过学案引导学生分析例题 , 寻找等量关系列方程。

难点:

1、通过学案引导学生从不同角度来寻找等量关系,列方程。

2、通过小组竞赛做题的竞争 , 慢慢地培养学生学习的积极性 , 逐步加强学生的自学能力。

教学方法:《小组竞赛学习法》

教学设计

课前准备

创设悬念 提出问题。

(上课的提前一天或周五下午,给学生每人一份学案,让学生充分讨论准备迎接小组比赛,后面备有学案内容)

课堂教学过程

一、老师出示学案的答案(选做题暂不给答案 , 下课后,学生可用 U 盘烤走当参考),宣布评卷规则。要求:学案每做一题(不包括选做题),不管对错得 1 分,能作对的加一分,并会讲的再加一分,选做题做了并对且会讲的应加倍给分。 ( 选做题让教师讲解后再让学生讲的不加倍给分。

小组组员之间先互帮互学对改答案,准备迎接其它组的检查。(大约用 20 分 -30 分钟,小组准备的越充分越好,若多数学生没准备好,可以再多给点时间让其准备,千万不能打无准备之仗,准备不好的话,先不小组比赛,下节课才小组比赛也行),此时老师巡回抽查每组中学生的自学情况,根据情况调整互帮互学时间,对于都不会的问题,教师可以演讲让优生先学会,再帮助差生学会。

二、小组推磨检查,一般每小组的前四名检查下组的后四名,( 8 人一个组)。

三、各组长统计分数并让被检组认可,教师统计各组分数, 对全班小组排列顺序,分数最低的小组起立向大家敬礼表示失败,(也可以对第一名小组奖励)教师把比赛结果记录在专用本子上,准备一周的总分评比。一周的总分数少的小组要替第一名小组打扫卫生一次。每周比赛结果也记录在专用本子上,准备一学期的总分评比。

四、布置下节自学任务而结束本节上课。

以下是备用内容

学生自学内容 (就是学案)

先给大家讲一个当代数学家苏步青教授故事,苏步青教授在法国遇到一个很有名气的数学家,这位数学家在电车里给苏教授出了个题目:

问题 1“ 甲乙两人,同时出发,相对而行,距离是 50 千米,甲每小时走 3km, 乙每小时走 2km ,问他俩几小时可以碰面?

苏教授一下子便回答出来了,你能回答上述问题吗?你能把解决的方法步骤写出来并给大家讲一下吗? ”

请 同学们先画出示意图:

再由图填空:甲乙相遇时,他们共行的路程为( )

从路程的角度分析:甲走的路程 + 乙走的路程为( )

从时间角度分析:甲走的时间 = 乙走的时间。

如果 设甲、乙相遇时他们所用时间为 x 小时,此时相等关系:

甲走的路程 + 乙走的路程) = ( )

即甲行走的速度×甲行走的( ) + 乙行走的( )×乙行走的时间 = ( )

四年级数学上册的教学计划 篇17

教材分析

从本册教材和前后教材的联系,各单元教学内容在全册教材中的地位、作用以及它们之间的联系,认真进行全册教材分析。全册教材共安排9个单元。

1.“数与代数”领域一共安排了5个单元,分别教学“升和毫升”“两、三位数除以两位数” “解决问题的策略” “可能性”和“整数四则混合运算”

“升和毫升”主要让学生认识容量以及容量单位升和毫升,知道1升=1000毫升。这是在学生认识了长度、质量、时间、面积等计量单位以及他们之间进率的基础上,认识的有一类量。

“两、三位数除以两位数”主要教学三位数除以两位数,是在整数范围内最后一次学习除法计算。对学生完整地理解除法计算的方法,形成必要的知识技能,以及将来进一步学习小数除法的计算都有重要意义。

“解决问题的策略”运用学过的数学知识和技能解决简单的实际问题,是小学数学的重要目标之一。在第一学段的学习中,学生已经初步了解同一数学问题可以有不同的解决办法,积累了一定的解决问题的经验。为了帮助学生把这些具体经验上升为理性的数学思考,体验策略的有效性和提高灵活运用策略解决问题的能力,教材从本册开始,每册安排一个单元,相对集中地介绍学生在解决问题时需要经常使用的、基本的解题策略。突出解决问题方法的选择、计划和运用,通过对方法的反思、内化促进策略的形成,增强使用和选择“策略”的自觉性,提高解决问题的能力。本册教材主要教学用列表的方法整理条件,分析数量关系,寻找解决问题的有效方法。

“可能性”这部分内容教学简单事件发生的可能性,主要包括简单的随机现象,简单随机事件发生的可能性以及可能性的大小。教材安排了两道例题,先教学简单的随机现象,再教学简单随机事件发生的可能性的大小。

“整数四则混合运算”主要教学混合运算的顺序和列综合算式解答两步计算的实际问题。本单元教学的都是两步混合运算。

2.“空间与图形”领域安排2个单元,分别教学“垂线和平行线”和“观察物体”。

“垂直和平行线” 主要教学射线、直线,角的概念,量角,锐角、直角、钝角、平角和周角,画角。这是在学生直观认识角的基础上进行教学的。在认识直线的基础上,主要教学直线与直线间的`位置关系,先教学平行,再教学垂直。

“观察物体”的主要教学从正面、侧面和上面观察由5个、6个同样大的正方体摆成的物体,以及两个简单物体的组合,使学生进一步学会辨认从不同方位看到的物体形状和相对位置,培养空间观念,发展初步的推理能力。

3.“统计表和条形统计图”领域安排一个单元,是第四单元“统计与可能性”。主要教学分段整理数据,认识1格表示多个单位的条形统计图,体会游戏规则的公平性。

4.“实践与综合应用”领域结合相关内容,一共安排了3次活动,分别是“简单的周期”“怎样滚得远”和“运动与身体的变化”。

“简单的周期”主要引导学生结合具体的问题情境,探索并发现简单周期现象中事物的排列规律

“运动与身体的变化”结合统计教学,让学生设计方案,收集班级同学的年龄、身高、体重、生日情况等方面的信息,并完成统计表或统计图。这一活动内容能激发学生的兴趣,并让学生感受到身边有许多情况可以去了解和研究。

“怎样滚得远”是结合角的教学安排的,主要让学生通过实验,探究物体从斜坡上向下滚动,在地面上滚动的距离。有助于引导学生学会通过实验分析问题,并形成用数据说话的严谨态度,培养实事求是的精神。

5.最后一个单元安排本册内容的“整理与复习”。

教学内容

这一册教材包括下面一些内容:(一)升和毫升;(二)两、三位数除以两位数;(三)观察物体;(四)统计和条形统计图;(五)解决问题的策略; (六)可能性;(七)整数四则混合运算;(八)垂线和平行线;(九)整理与复习;

教学目标

1.是学生在具体的观察、操作活动中,认识容量以及容量单位升和毫升,初步形成1升和1毫升的容量观念;知道升和毫升之间的进率,能进行简单的单位。

2.经历三位数除以两位数笔算方法的探索过程,掌握试商和调商的方法,能正确地进行笔算;能判断三位数除以两位数商是几位数,能估计商的最高位是几。

3.能结合现实素材理解乘法与加减法、除法与加减法混合运算的顺序,初步理解小括号的作用,会脱式计算两步运算的式题。

4.初步认识射线和直线,能区分线段、射线和直线;了解两点确定一条直线,两条相交直线确定一个点;体会两点间的所有连线中线段最短,知道两点间的距离。

5.进一步认识角,知道表示角的符号和角的计量单位“度”。认识量角器,会用量角器量指定角的度数,会画指定度数的角会用三角尺画30°、45°、60°、90°的角。

6.进一步认识直角、锐角和钝角,知道平角和周角,理解锐角、直角、钝角、平角、周角的大小关系。

7.能根据实际需要对数据分段整理,填写统计表,能对统计结果作出简单的分析和判断。

8.在探索三位数除以两位数笔算方法,进行有关的口算、估算的过程中,发展类比迁移能力、合情推理能力,进一步发展数感。

9.在认识射线和直线的过程中发展空间想像能力;在研究角的度数,认识平角、周角,认识平面内两条直线的位置关系等学习活动中,进一步发展空间观念,发展形象思维和抽象思维。

10.在解决问题的过程中,进一步学习有条理的思考,初步学习对结论的合理性做出说明。

11.在解决问题的过程中,能有效地与同伴合作,或者与同伴共同完成任务,或者把自己解决问题的过程和结果与同伴交流,体会合作的益处,进一步培养合作意识。

12.通过数学学习活动,初步体验到数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流,增加对数学的亲近感。

13.在观察、操作、归纳、类比、猜测等数学活动中,体验数学问题的探索性和挑战性,初步感受数学思考过程的条理性和数学结论的确定性,增强理性精神。

14.对不懂的地方或不同的观点敢于提出疑问,愿意对数学问题进行讨论,发现错误能及时改下,初步培养实事求是的科学态度。

教学重点

1.对三位数除以两位数进行笔算;正确判断商是几位数,商的最高位位是几。

2.能理解乘法与加减法、除法与加减法混合运算的顺序,初步理解小括号的作用,会脱式计算两步运算的式题。

3.定角的度数;画指定度数的角。

4.知条件想起或从所求问题想起的方法分析数量关系的学习过程。

教学难点

1.间隔排列的知识解决实际中的有关问题。

2.计表和条形统计图作出正确的分析。

3.尺、三角尺等工具画已知直线的平行线或垂线。

4.习过程中对学生的分析、判断、创新等能力进行培养。

进度安排

单元 课时 周次

升和毫升 3课时 1

两、三位数除以两位数 16课时 2~6

观察物体 4课时 7

统计表和条形统计图(一) 7课时 8~9

解决问题的策略 4课时 10

可能性 2课时 11

整数四则混合运算 5课时 12~13

垂线与平行线 11课时 14~16

整理与复习 6课时 17~18

教学措施

1.学期一开始就严格要求,加强学生能力和学习习惯的培养。

2.利用直观教具进行演示,帮助学生理解分析,从而轻松掌握所学知识。

3.加强补差工作,让每个学生都不落人后。

4.与现实生活紧密结合,让学生感觉学习不再枯燥无味。

5.通过直观和操作教学概念和法则。

具体教学措施

1.重视教学情境的创设,关注学生的生活经验,提供丰富的感性材料,加强学生的操作活动,结合生活实际帮助学生建立有关的数学概念。

2.培养学生估测、估算的意识,重视培养学生的估测、估算能力。

3.让学生通过解决实际问题来学习计算,提高教学的实效性,

4.运用“迁移”法进行教学,培养学生举一反三的能力。

5.引导学生独立思考、合作交流,让学生体验探究的乐趣。恰当、适时地运用小组合作学习方式,重视培养学生的应用意识和解决实际问题的能力。

6.重视直观教学,充分发挥教具、学具的作用。

7.注重学生对计算过程和方法的理解,抓住重点,突破难点,使学生打下扎实的知识基础。

8.让学生充分经历猜想、实验、验证的过程,主动建构数学知识。

9.坚持启发式教学,让学生主动参与知识的学习,能让学生问的让学生问,能让学生答的让学生答,能让学生思考的让学生思考,能让学生动手的让学生动手,能让学生讨论的让学生讨论,能让学生总结的让学生总结,努力探索和实践生态课堂,让课�

20 4833552
");