数学高二教案【汇集6篇】

网友 分享 时间:

通过系统讲解函数、方程与几何,培养学生逻辑思维与问题解决能力,激发学习兴趣,夯实数学基础。下面是勤劳的小编为大家分享的数学高二教案范例,欢迎借鉴参考。

高二数学下学期教学计划 篇1

指导思想

以学校工作总体思路为指导,深入学习和贯彻新课程理念,以教育教学工作为重点,优化教学过程,提高课堂教学质量。结合数学组工作实际,用心开展教育教学研究活动,促进教师的专业发展,学生各项素质的提高,提高数学组教研工作水平。

一、工作目标

1、加强常规教学工作,优化教学过程,切实提高课堂教学质量。

2、加强校本教研,用心开展教学研究活动,鼓励教师根据教学实际开展教学研究,透过撰写教学反思类文章等促进教师的专业化发展。

3、掌握现代教育技术,用心开展网络教研,拓展教研的深度与广度。

4、组织好学生的数学实践活动,以调动学生学习,丰富学生课余生活,促进其全面发展。

二、主要工作

1、备课做好教学准备是上好课的前提,本学期要求每位教师做好教案、教学用具、作业本等准备,以良好的精神状态进入课堂。

备课是上好课的基础,本学期数学组仍采用年级组群众备课形式,要求教案尽量做到环节齐全,反思具体,有价值。群众备课时,所有教师务必做好准备,每个单元负责教师要提前安排好资料及备课方式,对于教案中修改或补充的资料要及时地在旁边批注,电子教案的可在旁边用红色批注(发布校园网数学组板块内),使群众备课不流于形式,每节课前都要做到课前的“复备”。每一位教师在个人研究和群众备课的基础上构成适合自己、实用有效的教案,更好的为课堂教学服务。各年级组每月带给单元备课活动记录,在规定的群众备课时间,教师无特殊原因不得缺席。

提高课后反思的质量,提倡教学以后将课堂上精彩的地方进行实录,以案例形式进行剖析。对于原教案中不合理的及时记录,结合课堂重新修改和设计,同年级教师能够共同反思、共同提高,为以后的教学带给借鉴价值。数学教师每周反思不少于2次,每学期要有1—较高水平的反思或教学案例,及时发布在向校园网上,学校将及时进行评审。

教案检查分平时抽查和定期检查两种形式,“推门课”后教师要及时带给本节课的教案,每月26号为组内统一检查教案时间,每月检查结果将公布在校园网数学组板块中的留言板中。

2、课堂教学课堂是教学的主阵地。教师不但要上好公开课,更要上好每一天的“常规课”。遵守学校教学常规中对课堂教学的要求。课堂上要用心的创设有效的教学情境,要重视学习方法、思考方法的渗透与指导,重视数学知识的应用性。学校将继续透过听“推门课”促进课堂教学水平的提高,发现教学新秀。公开课力求有特点,能侧重一个教学问题,促进组内教师的研讨。一学期做到每人一节,年轻教师上两节。课堂对于比较成熟的公开课或研讨课鼓励大家录像,保存资料,及时地向校园网推荐。

三、教学工作

1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。同时对辅助资料加大研究,扩大自己的知识面以及同类学科之间的联系。

2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的'基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。针对我们这的学生数学认知能力和基础不是很好,上课要精选试题,做好教案和学案。要使每位学生掌握基础知识为教学落脚点。

3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。教好学前提要了解学生,关心爱护每位学生,要为学生提供宽松愉悦的课堂教学环境。

4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。要和同仁根据教材各章节的重难点制定教学进度,认真对待集体备课和听课。积极听有经验的老师的教研活动,积累教学经验。

四、教学计划

要提前一周制定好下周教学学案和教案。要精选试题,力求少而精,有针对性。要备好课,选好教学方法。

总之,教学是慢功夫,我会试图把它做好。

高二数学下学期教学计划 篇2

一、指导思想

1、获得必要的基本知识和技能,反复复习前面所学知识,加深印象。通过不同形式的自主学习,探究活动,培养学生对数学的兴趣。

2、发展数学应用意识,学会将数学知识运用于生活。

3、树立学生能学好数学的信心。

二、基本情况分析

本学期学的内容是拓展模块的数学知识,主要包括三角函数、二次曲线、概率与统计的相关知识点,与基础模块、职业模块相比,知识变的有一定的难度,并且更系统化,教学中估计困难不少,数学基础的差异程度加大,为教学的因材施教增加了难度。

我校的生源对象一般都是中考落榜生。学习上的挫折使他们失去了学习的信心和进取心。为了求职的需要,有部分学生自愿选择进入中职学校学习,但有相当一部分学生是迫于外界某种压力,如父母的强烈要求等,而不得不进入职业学校学习的;还有一些学生初中都没有念完,是家长为避免其子女在社会上出乱子,把孩子送到学校,学习知识则放在次要的位置。由于学生入学时,初中阶段的文化基础差,年龄小,对专业知识生疏,因此,接受能力、分析能力、思维能力偏低,综合素质普遍不高,学习能力差异较大等,给学校的教育管理和组织教学带来了很大的困难。

学生自身数学基础薄弱,基本概念模糊不清,基本方法掌握不扎实,知识积累量不够多,遗忘速度快,对问题的分析能力差,在上课时要尽可能的`放慢讲课速度,反复及时督促学生复习已学知识和预习新知识,多练习,以加深印象。

三、教学目标

理解所学知识的概念,能够通过数学语言描述,掌握新知识的灵活应用,熟练新知识的性质特征的实际应用。

着眼于数学教学的实际,通过“低起点、巧衔接”,力求实现学生乐于学,遵循学生认知发展的规律,降低知识的起点,由已知到未知,由浅入深,由具体到抽象。

四、方法措施

1、选取贴近学生生活的数学实例引导新知识,使学生产生生活中处处存在数学,以达到培养数学兴趣的目的。

2、通过实堂演练,引发学生的思考和探索,培养自主学习,形成逻辑思维习惯

五、课程安排及教学进度

数学高二教案 篇3

学习目标

(1)了解任意角的正切函数概念;

(2)掌握正切线的画法;

(3)能熟练掌握正切函数的图像与性质;

(4)掌握利用数形结合思想分析问题、解决问题的技能。

教学过程

一、自主学习

1、对于正切函数

(1)定义域:,

(2)值域:

观察:当从小于,时,

当从大于,时,。

(3)周期性:

(4)奇偶性:

(5)单调性:

2、作,的图象

二、师生互动

例1。比较与的大小

例2、。、讨论函数的性质

例、3、观察正切曲线写出满足下列条件的x的值的范围:tanx0

三、巩固练习

1、与函数的图象不相交的一条直线是()

2、函数的定义域是

3、函数的值域是

4、函数的奇偶性是,周期是

5、求函数的定义域、值域,指出它的。周期性、奇偶性、单调性,并说明它的图象可以由正切曲线如何变换得到。

四课后反思

五课后巩固练习

1。以下函数中,不是奇函数的是()

A。y=sinx+tanx B。y=xtanx—1 C。y= D。y=lg

2。下列命题中正确的是()

A。y=cosx在第二象限是减函数B。y=tanx在定义域内是增函数

C。y=|cos(2x+)|的周期是D。y=sin|x|是周期为2的偶函数

3。用图象求函数的定义域。

4。不通过求值,比较tan135与tan138的大小。

数学高二教案 篇4

教学目标:

1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

教学重点:

体会直角坐标系的作用。

教学难点:

能够建立适当的直角坐标系,解决数学问题。

授课类型:

新授课

教学模式:

启发、诱导发现教学。

教具:

多媒体、实物投影仪

教学过程:

一、复习引入:

情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的。位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?

问题2:如何创建坐标系?

二、学生活动

学生回顾

刻画一个几何图形的位置,需要设定一个参照系

1、数轴它使直线上任一点P都可以由惟一的实数x确定

2、平面直角坐标系

在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。

3、空间直角坐标系

在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

三、讲解新课:

1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

2、确定点的位置就是求出这个点在设定的坐标系中的坐标

四、数学 运用

例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

变式训练

如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置

例2已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区。试问:埋设地下管线m的计划需要修改吗?

思考

通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

五、小结:本节课学习了以下内容:

1.平面直角坐标系的意义。

2.利用平面直角坐标系解决相应的数学问题。

六、课后作业:

数学高二教案 篇5

教学目标:

1.掌握二项式定理和性质以及推导过程。

2.利用二项式定理求二项展开式中的项的系数及相关问题。

3.使学生能把握数学问题中的整体与局部的关系,掌握分析与综合,特殊和一般的数学思想。

教学重点;二项展开式中项的系数的计算。

教学过程:

1、复习引入:

1.的展开式,项数,通项;

2.二项式系数的四个性质。

2、例题

1.二项式定理及二项式系数性质的简单应用:

例1 (1) 除以9的余数是_____________________

(2)=_______________

(3)已知

则____________________

(4)如果展开式中奇数项的系数和为512,则这个展开式的第8项是( )

(5)若则等于()

小结1.(1)注意二项式定理的正逆运用;

(2)注意二项式系数的四个性质的运用。

2.二项展开式中项的系数计算:

例2 (1)展开式中常数项等于_____________.

(2)在的展开式中x的系数为( )

A.160B.240C.360D.800

(3)已知求:

小结2. (1)局部问题抓通项;

(2)整体系数赋值法。

三、课堂练习

(1)展开式中,各系数之和是( )

A.0B.1C.D.

(2)已知的。展开式中的系数为,常数的值是_________

(3) 的展开式中的系数为______________-(用数字作答)

(4)若,则

A.1B.0C.2D.

四、课堂小结

五、作业

数学高二教案 篇6

一、教学目标:

1、知识与技能:

(1)了解随机数的概念,掌握用计算器或计算机产生随机数求随机数的方法;

(2)能用模拟的方法估计概率。

2、过程与方法:

(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;

(2)通过模拟试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感态度与价值观:

通过模拟方法的设计体验数学的重要性和信息技术在数学中的应用;通过动手模拟,动脑思考,体会做数学的乐趣;通过合作试验,培养合作与交流的团队精神。

二、重点与难点:

重点:随机数的产生;

难点:利用随机试验求概率。

三、教学过程

(一)、引入情境:

历史上求掷一次硬币出现正面的概率时,需要重复掷硬币,这样不断地重复试验花费的时间太多,有没有其他方法可以代替试验呢?

我们可以用随机模拟试验,代替大量的重复试验,节省时间。

本节主要介绍随机数的产生,目的是利用随机模拟试验代替复杂的动手试验,以便求得随机事件的频率、概率。

(二)、产生随机数的方法:

1。由试验(如摸球或抽签)产生随机数

例:产生1—25之间的随机整数。

(1)将25个大小形状相同的小球分别标1,2, , 24, 25,放入一个袋中,充分搅拌

(2)从中摸出一个球,这个球上的数就是随机数

2。由计算器或计算机产生随机数

由于计算器或计算机产生的随机数是根据确定的算法产生的,具有周期性(周期很长),具有类似随机数的`性质,但并不是真正的随机数,而叫伪随机数

由计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法。

(三)、利用计算器怎样产生随机数呢?

例1: 产生1到25之间的取整数值的随机数。

解:具体操作如下:

第一步:MODE—MODE—MODE—1—0—

第二步:25—SHIFT—RAN#—+—0。5—=

第三步:以后每次按=都会产生一个1到25的取整数值的随机数。

工作原理:第一步中连续按MODE键三次,再按1是使计算器进入确定小数位数模式,0表示小数位数为0,即显示的计算结果是进行四舍五入后的整数;

第二步是把计算器中产生的0。000~0。999之间的一个随机数扩大25倍,使之产生0。000—24。975之间的随机数,加上+0。5后就得到0。5~25。475之间的随机数;再由第一步所进行的四舍五入取整,就可随机得到1到25之间的随机整数。

小结:

利用伸缩、平移变换可产生任意区间内的整数值随机数

即要产生[M,N]的随机整数,操作如下:

第一步:ON MODEMODEMODE10

第二步:N—M+1SHIFTRAN#+M—0。5 =

第三步:以后每次按=都会产生一个M到N的取整数值的随机数。

温馨提示:

(1)第一步,第二步的操作顺序可以互换;

(2)如果已进行了一次随机整数的产生,再做类似的操作,第一步可省略;

(3)将计算器的数位复原MODE MODE MODE 3 1

练习:设计用计算器模拟掷硬币的实验20次,统计出现正面的频数和频率

解:(1)规定0表示反面朝上,1表示正面朝上

(2)用计算器产生随机数0,1,操作过程如下:

MODEMODEMODE10 SHIFT RAN#=

(3)以后每次按=直到产生20随机数,并统计 出1的个数n

(4)频率f=n/20

用这个频率估计出来的概率精确度如何?误差大吗?

(四)、用计算机怎样产生随机数呢?

每个具有统计功能的软件都有随机函数。以Excel软件为例,打开Excel软件,执行下面的步骤:

(1)在表格中选择一格如A1,在菜单下的=后键入=RANDBETWEEN(0,1),按Enter键就会产生0或1。

(2)选定A1这个格,按Ctrl+C复制这个格,然后选定A2~A1000要粘贴的格,按Ctrl+V键。

(3)选定C1格,在菜单下=后键入=FREQUENCY(A1:A1000,0。5),按Enter键。

(4)选定D1这个格,在菜单下的=后键入1—C1/1000,按Enter键。

同时还可以画频率折线图,它更直观地告诉我们:频率在概率附近波动。

【例2】天气预报说,在今后的三天中,每一天下雨的概率均为40%。这三天中恰有两天下雨的概率大概是多少?

分析:试验的可能结果有哪些?

用下和不分别代表某天下雨和不下雨,试验的结果有

(下,下,下)、(下,下,不)、(下,不,下)、(不,下,下)、

(不,不,下)、(不,下,不)、(下,不,不)、(不,不,不)

共计8个可能结果,它们显然不是等可能的,不能用古典概型公式,只好采取随机模拟的方法求频率,近似看作概率。

解:(1)设计概率模型

利用计算机(计算器)产生0~9之间的(整数值)随机数,约定用0、1、2、3表示下雨,4、5、6、7、8、9表示不下雨以体现下雨的概率是40%。模拟三天的下雨情况:连续产生三个随机数为一组,作为三天的模拟结果。

(2)进行模拟试验

例如产生30组随机数,这就相当于做了30次试验。

(3)统计试验结果

在这组数中,如恰有两个数在0,1,2,3中,则表示三天中恰有两天下雨,统计出这样的试验次数,则30次统计试验中恰有两天下雨的频率f=n/30。

小结:

(1)随机模拟的方法得到的仅是30次试验中恰有2天下雨的频率或概率的近似值,而不是概率。在学过二项分布后,可以计算得到三天中恰有两天下雨的概率0。288。

(2)对于满足有限性但不满足等可能性的概率问题我们可采取随机模拟方法。

(3)随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数。

练习:

。试设计一个用计算器或计算机模拟掷骰子的实验,估计出现一点的概率。

解析:

(1)。规定1表示出现1点,2表示出现2点,。。。,6表示出现6点

(2)。用计算器或计算机产生N个1至6之间的随机数

(3)。统计数字1的个数n,算出概率的近似值n/N

(五)、课堂小结:

随机数具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验。通过本节课的学习,我们要熟练掌握随机数产生的方法以及随机模拟试验的步骤:

(1)设计概率模型

(2)进行模拟试验

(3)统计试验结果

(六)、作业

18 5095733
");