人教版初一下册数学知识点梳理(汇总7篇)
初一下册数学主要涉及整数、分数、方程与不等式、平面图形的周长与面积、数据的收集与整理等内容,如何有效掌握这些知识点呢?以下是阿拉题库的小编为大家分享的人教版初一下册数学知识点梳理文章,欢迎您借鉴参考。
最新初中年级数学整式知识点 篇1
1.单项式:
1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及_质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:
1)几个单项式的和叫做多项式。在 多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:
1).把一个多项式按某一个字母的指数从大到小的。顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的_质符号,因此在排列时,仍需把每一项的_质符号看作是这一项的一部分,一起移动。
初一数学上册知识点 篇2
第一章 有理数
1.正数和负数
2.有理数
3.有理数的加减
4.有理数的乘除
5.有理数的乘方
重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字
难点:绝对值
易错点:绝对值、有理数计算
中考必考:科学计数法、相反数(选择题)
第二章 整式的加减
1.整式
2.整式的加减
重点:单项式与多项式的概念及系数和次数的确定、同类项、整式加减
难点:单项式与多项式的系数和次数的确定、合并同类项
易错点:合并同类项、计算失误、整数次数的确定
中考必考:同类项、整数系数次数的确定、整式加减
第三章 一元一次方程
1.从算式到方程
2.解一元一次方程----合并同类项与移项
3.解一元一次方程----去括号去分母
4.实际问题与一元一次方程
重点:一元一次方程(定义、解法、应用)
难点:一元一次方程的解法(步骤)
易错点:去分母时,不含有分母项易漏乘、解应用题时,不知道如何找等量关系
第四章 图形认识实步
1.多姿多彩的图形
2.直线、射线、线段
3.角
4.课题实习----设计制作长方形形状的包装纸盒
重点:直线、射线、线段、角的认识、中点和角平分线的相关计算、余角和补角,方位角等
难点:中点和角平分线的相关计算、余角和补角的应用
易错点:等量关系不会转化、审题不清
最新初中年级数学整式知识点 篇3
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;
单项式中所有字母指数的和,叫单项式的次数
3.多项式:几个单项式的和叫多项式
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项
6.合并同类项法则:系数相加,字母与字母的指数不变
7.去(添)括号法则:去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是-号,括号里的各项都要变号
8.整式的。加减:一找:(划线);二+(务必用+号开始合并)三合:(合并)
9.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)
最新初中年级数学整式知识点 篇4
整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样。
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的`一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
初一数学上册知识点 篇5
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
快速判定方法:1)不等边三角形:最小两个边之和大于第三个边,就能组成三角形。2)等腰三角形:两腰之和大于底,就能组成三角形。3)等边三角形:肯定能组成。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的画法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;推论2三角形的一个外角等于和它不相邻的两个内角和;推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角(六选三原则)
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。
最新初中年级数学整式知识点 篇6
整式的运算
一、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
二、合并同类项:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。同类项 合并的依据:乘法分配律。
三、整式运算的法则:
1.整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接
2. 整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式,相同字母相乘(除)要用到同底数幂的运算性质:
多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加
3.整式的乘方
单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式
单项式的乘方要用到幂的乘方性质与积的乘方性质:
4.乘法公式
整式的加减
第一部分
一、全章知识结构
二、基本概念
1、单项式的概念:
数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。
(1)单项式的系数
单项式中的数字因数叫做单项式的系数。
(2)单项式的次数
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
规定:对于单独一个非零的数,规定它的次数为0
2、多项式的概念:
几个单项式的和叫做多项式
(1)多项式的项:在多项式中,每个单项式叫做多项式的项,其中不会字母的项叫做常数项。
(2)多项式的次数:多项式里,次数最高的项的次数,叫做这个多项式的次数。
3、多项式的排列:
(1)升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母的升幂排列。
(2)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母的降幂排列。
4、整式的意义:单项式和多项式�
5、同类项的概念:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项。几个常数项也是同类项。
6、应注意的问题:
(1)系数(单项式或多项式的某项)包括前面的符号,特别地,在单项式中作为系数,如2a的系数为2
(2)单项式只允许含有乘法以及数字为除数运算;多项中必须会有加法或减法运算,但不能有以字母为除式的除法运算。
(3)多项式重新排列时,各项要连同它前面的符号一起移动。
(4)多项式不含某一字母次数的项,表示此项的系数为0,如x2+1不含x的一次项,说明这样的一次项x的系数为0。
三、基本法则
1、整式加减法法则:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项
2、去括号法则
(1)括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变;
(2)括号前面是"-"号,把括号和它前面的"-"号去掉,
括号里各项的符号都要改变为相反的符号
注: 要注意括号前面的符号,它是去括号后括号内各项是否变号的依据。 去括号时应将括号前的符号连同括号一起去掉
要注意,括号前面是"-"时,去掉括号后,括号内的。各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号
第二部分
1、用字母表示数。一般用加号(+)、减号(-)、乘号(x)、除号(÷)等运算号连接成式子。如x+y,2ab2,-6,t,s等。在写由字母和数字组成的式子时,要注意书写的格式:
(1)字母与字母相乘,乘号可以写成“.”或省略不写;如或xy
(2)数字与字母相乘,数字一定要写在字母的前面;如2πr
(3)除法算式一般写成分数的形式;如x÷y=x
(4)带分数写成假分数的形式,如果后面有字母必须写成假分数;如a不能32写成1a
2、用式子简明地表示数量关系。
速度×时间=路程(表示:vt=s)
正方体的体积=长×宽×高(表示:v=abh或a2h)
水流速度是/h,则顺水速度=V+,逆水速度=V—。
3、整式:单项式与多式�
(1)单项式:数字和字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式。如100t,,mn,a2h,-n,36等。
单项式的系数:单项式有数字和字母因数两部分组成,其中的数字因数叫做单项式的系数。
单项式的次数:所有字母的指数和叫做这个单项式的次数。
注:单项式里没有加减运算,系数包括前面的符号,次数不包括系数的次数。如:-5x2y是积的形式,系数是-5不是5,次数是3次不是4次。
(2)多项式:几个单项式的和叫做多项式。如x2+2x+18。
多项式的项:每个单项式叫做多项式的项。如x2+2x+18是一个三项式。 多项式的常数项:不含字母的项叫做常数项。如上式中的18。
多项式的次数:次数最高项的次数叫做多项式的次数。如x2+2x+18的最高次数的项是x2,这个多项式的次数是二次,它是一个二次三项式。 注:多项式是有加减运算,它的次数不是有项的次数。
4、整式的加减(合并同类项)。
同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。如100t与-252t,3x2与 2x2,3ab2与-4ab2。几个常数项也是同类项,如5与-9。
合并同类项:把多项式中的同类项合并成一项,叫做合并同类项,即整式的加减。
合并同类项的方法:同类项的系数相加,字母及指数不变。
如:4a2+3b2+2ab-4a2-4b2
=(4-4) a2+(3-4) b2+2ab
=- b2+2ab
5、去括号的法则:
括号前面是“+”号,把括号,和它前面的“+”号同时去掉,原括号里各项的符号都不改变;括号前面是“”号,把括号和它前面的“”号同时去掉,原括号里各项的符号都要改变。
如:(5a-3b)-3(a2-2b)
=5a-3b-3 a2+6b
第三部分
1、单项式
(1)、都是数或字母的积的式子叫做单项式。(单独的一个数或一个字母也是单项式。)
如:2,2bc,3m,a,都是单项式。
(2)、单项式中的数字因数叫做这个单项式的系数。如:2ab中2是这个单项式的系数。
(3)、单项式系数应注意的问题:
① 单项式表示数字与字母相乘时,通常把数字写在前面;
② 当单项式的系数是带分数时,要把带分数化成假分数;
③ 当单项式的系数是1或-1时,“1”通常省略不写;
④ 圆周率π是常数;
⑤ 单项式的系数应包括它前面的“正”、“负”符号。
(4)、一个单项式中,所有字母的指数的和叫做这个单项式的次数。如:xy2,这个单项式的次数是 3 次,而不是2次。(单独的一个数的次数是0)
2、多项式
(1)、几个单项的和叫做多项式。其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。多项式的每一项都包含它前面的符号。
如:2a2+3b-5 是一个多项式,2a2,3b,-5是这个多项式项,-5是常数项。
(2)、多项式里次数最高项的次数,叫做这个多项式的次数。
如:2a2+3b-5的次数是2
(3)、单项式与多项式统称整式。
3、合并同类项
(1)、所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。
如:2a+3a-a+3a2中2a,3a,a是同类项,而2a,3a2则不是同类项。
(2)、把多项式里的同类项合并成一项,叫做合并同类项。
(3)、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
如:2a+3a-a 合并同类项得:4a,数字相加或相减,字母不变。
4、去括号
(1)、去括号法则:
① 如果括号外的因数是正数,去括号后括号内每一项的符号都不变。(“+”不变)
如:(2a+5)去括号后不变:2a+5
② 如果括号外的因数是负数,去括号后括号内每一项的符号都变。(“-”全变)
如:-(2a+5)去括号后变成:-2a-5
(2)、去括号应注意:
① 去括号应考虑括号内的每一项的符号,做的要变都变,要不变都不变;
② 括号内原来有几项,去掉括号后仍有几项,同时括号前的符号也要去掉。
(3)、当括号前的因数是1或-1时:
① 先把数字与括号内的每一项相乘;
② 再根据去括号法则去括号。
(4)、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项
初一下册必备数学知识点 篇7
一、实数的概念及分类
1、实数的分类、正有理数、有理数零有限小数和无限循环小数
负有理数
正无理数
无理数无限不循环小数
负无理数
整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数�
2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如7,2等;
π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3
(3)有特定结构的数,如0、1010010001…等;
二、实数的倒数、相反数和绝对值
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于
零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、实数与数轴上点的关系:
每一个无理数都可以用数轴上的一个点表示出来,
数轴上的点有些表示有理数,有些表示无理数,
实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
初中数学线段的性质
(1)线段公理:所有连接两点的线中,线段最短。也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
上一篇:九画属火的字优质2篇
下一篇:返回列表
