牛顿第一定律教案汇总4篇

网友 分享 时间:

【导言】此例“牛顿第一定律教案汇总4篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

牛顿第一定律教案【第一篇】

关键词:思维导图;物理教学;牛顿第二定律

思维导图,即思维疏导、梳理图,也称为心智导图、脑图、脑力激荡图、灵感触发图、树状图或思维地图等[1]。思维导图的源头是笔记法,经过不断的发展,运用图文并茂的方法技巧和隶属层次框图的构建,将所创建的关键词、关键点整合,使之罗列成层次清晰的结构,并以添加色彩和图像的形式使思维可视化。在教育教学领域,思维导图作为表达图像式思维的辅助工具,在课堂教学和自学过程中能使课程主题以及关键点更为鲜明突出,可操作性极强。将思维导图融入物理教学中意义重大:首先,教学过程中增强了学生的主体性,不是把学生当成完成学习任务的工具,而是关注学生对所学物理知识的接受程度。其次,相对于传统的“满堂灌”教学方式,以思维导图的形式呈现物理知识或者物理现象能够使同学们更易于接受,提高同学们学习物理知识的积极性。最后,教师利用思维导图进行物理知识讲解,能够使学生物理思维变得更加清晰,让学生更容易理解物理知识。由此可见,基于思维导图的高中物理教学模式具有极高的研究价值[2]。

一、思维导图理念下的高中物理教学基本流程

思维导图设计教学体现了学习物理的思维过程,有利于提升学生的综合能力和物理教学质量[3]。在高中物理教学中,主要分为以下几个阶段,分别为课前预习阶段、课堂教学阶段、课后巩固阶段,基本流程见图1。图1思维导图理念下的高中物理教学模式流程图1.课前预习:学生初建个人思维导图学生可以利用思维导图进行课前预习,搜集与本节主题相关的知识,或者探寻解决本课重难点的方法步骤。每位同学查找这些资源后,对本课主题都有自己独到的见解,对其所涉及到的知识也都有自认为的重点难点,并根据自身理解发挥独特的创新思维。牢牢把握本课主题所要讲解内容的重难点,以及各个知识点的顺序,这样在课堂听讲时就能紧跟教师步伐,才可以改变传统课堂中边听讲边记录的模式,让学生将所有注意力集中在课堂的教学过程上,教师也可以利用思维导图进行讲解,和学生进行很好地互动,使师生关系更加和谐。

2.课堂教学:学生掌握思维导图的构建(1)教师用思维导图创设物理情境物理学要求我们从生活走向物理,从物理走向社会,物理来源于生活的探索实践,并能促进社会的发展进程。因此,学会从生活经验中提取物理问题、总结物理规律就显得尤为重要,需要教师和学生细心观察生活,多思考哪些生活实例和物理知识相关,勤思考为什么。教师在引入新课的过程中,将与本节课主题相关的生活经验或者常见的生活现象一一列举出来,就可以避免直接切入主题的唐突与陌生感。如果只是将这些生活现象以文字形式罗列,学生会失去对于本节课的兴趣和主动求知的好奇心。运用思维导图添加图片或关键字词以框架形式展示出来,在学生对于本节课有浓厚兴趣的基础上,教师继续用思维导图的形式提出本节课需要师生共同探索解决的问题,这样能够让同学们更加清晰地把握本节课需要掌握的重难点。借助思维导图,让学生在兴趣的驱动下主动参与概念教学,把握住学好物理的关键[4]。因此,用思维导图创设物理情景更能激发学生的学习兴趣。(2)学生合作共建小组思维导图在现代化教育的今天,校内外图书馆日益普遍,信息技术越来越发达。现在有很多学校建有“未来教室”,使学生在自主学习方面更加的方便、快捷、高效。在课前,教师应要求学生预习下节课所讲知识点,此时,学生不仅要提前梳理知识脉络,还应该做到将下节课所涉及到的知识的内涵与外延,利用身边的图书、互联网查阅并下载成资料带到课堂方便同学们共同学习讨论。课上,教师在课堂引入和基础概念讲解过后,将学生分成几个小组。每小组同学利用课前搜集的材料进行交流探究,由于每一位同学都有自己独到的见解,课上交流能够让同学们的思想灵魂得到碰撞,而后小组成员共同构建思维导图。将每个知识点、性质以及扩充的内容按照清晰合理的思路填入思维导图的框架中,在课前学生独立构图的基础上,小组合作学习探究能够产生“1+1>2”的效果,取长补短、协同创作,制作成小组成员公认为最完美的思维导图。(3)师生合作完善小组思维导图讨论结束过后,教师收集各小组思维导图,并利用多媒体设备将各个小组的思维导图投放给大家观看。每投放一组的导图,就请其他小组同学参与点评,采用生生互评,发挥同学们的主观能动性,指明其优点与缺点。教师进行总结性评价,明确每一组思维导图的闪光点,提供给其他组成员借鉴采纳。最后,教师总结升华,给出由多个教师共同制作的较为完善的思维导图,让同学们对比本小组所做思维导图找出不足,之后同学们对小组思维导图进行进一步的完善。在此过程中,能充分发挥学生的自主学习能力,将学习成果深刻的移植到记忆库中,达到深层记忆的目的。

3.课后巩固:学生完善个人思维导图课堂上,学生掌握了如何绘制更全面的思维导图,在课后整理、回顾时就可以将课前预习时独立绘制的初步思维导图进行补充与修正,从而完善个人的思维导图。在此过程中,不仅可以复习知识点,还可以在梳理结构的过程中将本节课自己不容易掌握、理解的知识进一步定位,重点标记,以便今后复习。课后再次依据思维导图巩固总结,实则是对课堂学习思维过程的再现和探究过程的回顾,是对本节课系统全面的梳理。在物理学习中,要做到举一反三,在学生学过每个章节后,都可以鼓励其将本章节中每节课所涉及到内容间的内在联系和区别梳理清晰后构建章节思维导图。如果能将每一章节的知识串联在一起呈现,学生对于知识查漏补缺、梳理框架的能力会得到质的飞跃。

二、思维导图理念下的高中物理教学案例分析———以“牛顿第二定律”为例

1.学生初建个人思维导图在学习牛顿第二定律前,同学们可搜寻与牛顿第二定律相关的课外参考书或参考资料,将本节课所涉及到的牛顿第二定律内容以及对其的理解进行细节梳理,就可以了解本节课的重点为牛顿第二定律的内容,难点为力与质量、加速度的相互关系,每位同学对牛顿第二定律都有自己独到的见解,因此在知识点梳理过后能够自主勾勒出属于自己的思维导图(见图2)。

2.教师利用思维导图创设物理情境教师在引入牛顿第二定律的过程中,可以将与牛顿第二定律相关的生活现象以思维导图的形式一一列举出来。例如运动中的汽车在其他条件相同的情况下,只改变汽车的牵引力,能够发现汽车加速度不同;用力推拉玩具,玩具将会立刻获得加速度。引用一些生活中常见的物理现象,并配以生动的图片或动画,既能让学生有贴近生活的亲切感,又因为思维导图引入后梳理出的清晰思路而激发学生学习的积极性。接着教师引导学生总结所列举的生活实例中蕴含的规律,这样就可以切入今天学习的主题———牛顿第二定律。利用思维导图创设物理情境对于本课主题的引出十分连贯顺畅,所以要学好物理,思维方式十分重要。教师要在教学中注重培养学生利用思维导图发展自己多样化的能力。

3.学生合作共建小组思维导图教师在课堂上将牛顿第二定律的内容以思维导图的形式引导出来,并根据内容让学生推导出F=ma这一表达式。当探究到牛顿第二定律的性质时,教师将学生进行分组,每组学生将课前各自搜集到的资料展示给本小组的每位同学,让学生发挥自己的思维优势,相互交流各自的看法,最后总结出牛顿第二定律的六大特性-同体性、因果性、矢量性、瞬时性、相对性、独立性,并将每一种性质根据所查阅的资料进行扩充总结。在此过程中,小组成员全员参与、激烈讨论,这样可以激发学生探究物理的兴趣,在思维导图建造的过程中,将原本沉闷的课堂变得轻松愉快。

牛顿第一定律教案【第二篇】

新课标要求教师打破传统的教学方式,注重培养学生的创新能力和运用知识的能力,从而以促进学生学习的积极性,主动获取知识。那么,应当如何在新课标的要求下,创新高中物理教育模式,提升物理教学有效性。笔者认为,这必须要求教师正确的解读新课标的要求,从创新物理教育的理念出发,不断创新物理教学手段,激发学生的学习兴趣,帮助学生树立创新意识,同时转变传统的教育观念,以学生为主体,协调师生关系,才能真正的提升教学的有效性。

二、新课标背景提升高中物理教学有效性的策略

新课标强调的课堂教学的有效性取决于学生参与教学的积极性和主动性,因此,提升课堂教学有效性的关键是“以学生为本”。

1、实验驱动,激发学生学习兴趣

因为受到传统教学观念的影响,中学物理的实验教学往往被看作是对物理现象的呈现和教授知识的手段,而就忽略了实验对学生所起到的启发、验证以及激发兴趣的功效。因此,教师应当利用好实验,激发学生的兴趣,让学生更多的参与到实验当中,主动的去探索和研究。如在教学“圆周运动”中的“离心力”时,学生们对离心力的概念和形态都比较抽象,因此,通过自制实验来帮助学生进行了解,既能激发学生的兴趣,又能对离心力有个形象的了解。实验需要学生准备一个塑料瓶、纱布条、一把锥子、铁丝、一个玩具电机、若干导线以及两节电池和开关。然后用锥子在瓶盖中心转一个孔,在瓶身周围转许多小洞(图1)。在瓶盖的孔上插上电机轴(图2),然后用导线将电机与电池、开关相连接(图3)。最后让学生将纱布条沾上水后放进瓶内,盖上瓶盖,打开开关,学生们就会看见有许多的水珠从孔里飞出。通过这个实验,学生既有兴趣去完成实验,又能在实验的过程中掌握知识。

2、情景驱动,培养学生理解能力

高中物理教师要善于利用多媒体课件来创设形象化教学情景来辅助教学。如在学习比较抽象的物理概念时,学生很难通过想象来理解这些抽象知识,如果利用多媒体课件使这些抽象的概念变得具体一点,能够使学生感到形象、生动而变得容易理解。如在讲牛顿第一定律时,虽然做了小车在不同材质上的运动试验,推出小车在光滑无摩擦的地面上永远不停的理论时,但是由于现实中不存在无摩擦的现象,学生很难理解透彻,这时如果能够利用多媒体来演示一段小车在无摩擦地面的运动(图4),可以使学生映像更深刻,也更容易理解,这远比简单的用语言来来说明更具说服力。

3、任务驱动,改变学生的学习方法

任务驱动就是在物理教学的过程中,学生在教师的帮助下,能够紧紧围绕一个共同的任务活动,在强烈的问题动机驱动下,学生通过对学习资源的主动应用,进行对物理课程的主动探索和互助学习,并在学生完成任务时引导学生进行学习活动实践。如在“感应电流方向”的教学中,教师可以通过对旧知识的复习为方式来完成任务驱动教学,提出以下几个为题:

1.感应电流在闭合电流中如何产生?

2.怎样判断感应电流的方向?

3.使用左手定律的情况是什么?

4.已知导体中电流和磁场的方向,那么能否判断出导体的运动方向?

对于前面三道题学生可以通过以学过的知识而得到答案,而第四个问题学生就很难从以往的知识中得出答案。这时交给学生一个任务,就是带着观察试验中感应电流的方向这个问题,去做“用磁体去插、拔来改变线圈中磁通量”的实验,并让学生研究感应电流的方向是由什么决定的。这样学生带着任务对实验进行探索研究,产生出各种疑问,如在实验中电流的方向与线圈的绕法有什么关联?线圈中的感应电流是从那里来的?等等问题,这样学生带着任务去主动探索、合作讨论,从而得出结论。

4、目标驱动,促进学生的学习动力

目标驱动教学就是将物理教学目标作为核心,以教师为主导,学生为主体,以教学目标为主线进行教学,目的是通过将教学目标围绕在教学过程中,以此来激发学生的学习兴趣,激烈学生为实现教学目标而努力。如在教学“牛顿第三定律”时,其目标可以细分为知识和技能的掌握、教师的教学方式以及学生情感价值观的培养。

1.知识和技能的掌握就是要通过“牛顿第三定律”的教学,让学生掌握牛顿第三定律的概念以及作用力与反作用力之间的关系;通过实验使学生掌握牛顿第三定律的试验方法与原理;通过对“牛顿第三定律”的学习,能够在不同的环境中区别作用力、反作用力、平衡力,并能利用牛顿第三定律解决实际生产问题。

牛顿第一定律教案【第三篇】

教学目标

知识目标:

知道牛顿第一定律,常识性了解伽利略理想实验的推理过程。

能力目标:

1.通过斜面小车实验,培养学生的观察能力。

2.通过实验分析,初步培养学生科学的思维方法(分析、概括、推理).

情感目标:

1.通过科学史的简介,对学生进行严谨的科学态度教育。

2.通过伽利略的理想实验,给学生以科学方法论的教育。

教学建议

教材分析

教材首先通过回忆思考的形式提出问题:如果物体不受力,将会怎样?通过小车在不同表面运动的演示实验,使学生直观的看到物体运动距离与阻力大小的关系,为讲解伽利略的推理作准备。然后讲述伽利略的推理方法和通过推理得出的结论,再介绍迪卡儿对伽利略结论的补充,牛顿最后总结得出的牛顿第一定律。通过这些使学生了解定律的得出是建立在许多人研究的基础上的,正如牛顿所说:“如果说我所看的更远一点,那是因为站在巨人肩上的缘故”。最后指出牛顿第一定律不是实验定律,而是用科学推理的方法概括出来的,定律是否正确要通过实践来检验。给学生以科学方法论的教育。

本节课的重点是揭示物体不受力时的运动规律,即牛顿第一运动定律。

教法建议

1.学生学习牛顿第一定律的困难在于从生活经验中得到的一种被现象掩盖了本质的错误观念,认为物体的运动是力作用的结果。如推一个物体,它就动,不再推它时,它便静止。为使学生摆脱这种错误观念,首先要把运动和运动的变化区别开,树立从静到动和从动到静都是“运动状态改变”的概念,这是为了揭示力和运动的关系做的重要铺垫。其次,通过实验确立“力是改变运动状态的原因”的概念。再通过推理建立“不受力运动状态不变”的概念。

2.通过图9-1演示实验的比较、分析、综合、推理是本节课的核心,可对学生进行简单的科学推理方法的教育。在此演示实验中可通过设计不同的问题渗透研究方法。

3.本节课可按着人类对知识的认识顺序组织教学,让学生体会规律的认识过程,对学生进行学史教育。从亚里士多德的观点——伽利略的研究——笛卡尔的补充——牛顿的总结。

教学设计示例

牛顿第一定律

教学重点:通过对小车实验的分析比较得出牛顿第一定律。

教学难点:

1.明确“力是维持物体运动的原因”观点是错误的。

2.伽利略理想实验的推理过程

教学用具:斜面,小车,毛巾,棉布,玻璃板,微机,实物投影,大倍投电视。

教学过程

一、实验引入:批驳亚里士多德的观点

[演示1]在桌面上推动木块(或板擦)从静止开始慢慢向前运动,撤掉推力,木块立即停止。

分析:日常生活中也有许多类似的现象,(如推桌子)。这些现象从表面上看,“必须有力作用在物体上,才能使物体继续运动,没有力的作用,物体就要停下来。”即:板擦的运动需要推力去维持。于是,古希腊哲学家亚里士多德就根据这些现象总结出“物体的运动需要力去维持”。这种观点在历史上曾被沿用两千多年,但时沿用两千年是否就一定正确呢?也可能有人曾表示过怀疑或有人认为就是错误的,但没某能说服别人的理由。

[演示2]在桌面上推动木块(或板擦)从静止使之向前运动,用力推出,木块向前运动一段距离后停止。

分析:推力撤掉,还要向前运动,与亚里士多德的观点不符。

分析:木块:静止——运动——静止。两个过程中是否都有力存在?在这两个过程中力的作用是维持原来的运动状态还是改变运动状态?

二、讲授新课:

1.规律总结过程

方法1.教师引导

伽利略的贡献:理想实验

[演示](通过实物投影仪把实验过程反映在大倍投电视上)

介绍器材

实验前提条件:每次实验都需从斜面上的同一高度下滑,为什么?

实验过程:让小球从同一斜面的同一位置滚下后分别在毛巾表面、棉布表面、玻璃表面上运动,每次记下小球停下时的位置。做标记的位置是什么位置?(停下来的位置)

实验纪录:

实验次数表面材料阻力大小滑行距离

1毛巾最大最短

2棉布较大较长

3玻璃较小长

推理想象光滑表面阻力为零无限长

实验分析:

三次实验,小车最终都静止,为什么?

三次实验,小车运动的距离不同,这说明什么问题?

小球运动距离的长短跟它受到的阻力有什么关系?

若使小车运动时受到的阻力进一步减小,小车运动的距离将变长还是变短?

根据上面的实验及推理的思想,还可以推理出什么结论?

推理:小球在光滑的阻力为零的表面,将会怎样运动?

实验结论:通过伽利略的实验和科学推理得出“运动的物体,如果受到的阻力为零,它的速度将不会减慢,将以恒定不变的速度永远运动下去。”即作匀速运动。

[微机模拟实验]:简介伽利略理想实验

迪卡儿的补充

如果运动物体不受任何力的作用,不仅速度大小不变,而且运动方向也不变,将沿原来的方向匀速运动下去。

牛顿的成果:补充与概括

师:物体除了运动的以外,还有静止的。那么,静止的物体在没有受到外力作用时,保持什么状态呢?(牛顿补充:将保持静止状态)

师(引导学生概括):我们现在已经有了伽利略的研究成果,又有了迪卡儿和牛顿的补充,把两者进行一下概括:一切物体在没有受到外力作用时,将如何呢?(对概括出来大致意思的同学给予鼓励)

介绍:牛顿抓住时机,概括总结得出著名的牛顿第一运动定律

方法2:学生探究式学习

针对基础较好的学生,可以由学生在老师的指导下自己完成斜面小车实验,根据现象学生分组讨论,明确亚里士多德的观点的问题根源.由学生互相补充确定实验结论。

2.定律分析

定律成立条件:不受外力作用

运动规律:总保持匀速直线运动状态或静止状态。

师(回应课题引入实验):回想我们最开始的实验,有推力板擦运动,撤去推力板擦停下来,从表面现象上得到的结论运动需要力维持是错误的,但这种现象是千真万确摆在我们面前的,我们如何用牛一的观点正确的解释这个现象呢?

三、巩固练习

1.一物体放在桌上静止,假若某瞬间撤掉所有的外力,物体将怎么样?

2.对于牛顿第一定律的看法,下列观点正确的是()

A.验证牛顿第一定律的实验可以做出来,所以惯性定律是正确的

B.验证牛顿第一定律的实验做不出来,所以惯性定律不能肯定是正确的

C.验证牛顿第一定律的实验做不出来,但可以经过在事实基础上,进一步科学推理得出惯性定律

D.验证牛顿第一定律的实验虽然现在做不出来,但总有一天可以用实验来验证。

四、小结

人们对物体的运动规律的认识是经历了漫长的时间的。物体在不受力时的运动规律,它是经过亚里士多德对人们近两千年的思想束缚,伽利略的科学推理,才最终由牛顿总结出来的。牛一的重要贡献是:1)力不是维持物体运动的原因,2)力是改变物体运动状态的原因。

五、作业:阅读本节教材

活动流程

制订实验方案;准备器材;实验并记录现象,分析材料并得出一些结论;与老师所做实验比较优缺点;与其他组交流。

备注

1、要有完整的过程记录。

2、和其他成员交流。

探究活动

牛顿力学的建立

组织形式个人或自由结组

活动目的

牛顿力学的建立不是牛顿一个人的功劳,而是许多科学家努力研究的最终结果,查阅资料了解牛顿力学的建立过程,及牛顿力学的体系。

活动流程

制订查阅和查找方式;收集相关的材料;分析材料并得出一些结论;写出论文;与其他组交流。

备注

1、网上查找的资料要有学习的过程记录。

2、和其他成员交流。

斜面小车实验的再研究

组织形式个人或自由结组

活动目的

运用不同的物体表面,通过实验探究,加深对伽利略推理思维的理解。

牛顿第一定律教案【第四篇】

关键词:国外;力学概念;前概念

中图分类号: 文献标识码:A文章编号:1003-6148(2007)8(S)-0003-4

1 引言

物理概念是客观事实的物理共同属性和本质特征在人们头脑中的反映,是物理事实的抽象。物理概念是整个物理学知识体系的基石,而“牛顿力学是整个物理学的基础,因此学生对于牛顿力学概念的理解是学好物理的关键”。上世纪二十年代,皮亚杰开创了对儿童物理概念研究的先河,他偏重于研究年幼的孩子对于力和运动概念的理解。更多的物理教育研究者从八十年代开始了大规模对学生物理概念的研究,其内容涉及到力、运动、能量、光、热、温度及简单电路等,但其中大部分研究集中在力学领域。现就国外学生力学概念的研究内容和结果进行分析,以期对我国物理概念教学及改革有一定的启示。

2 国外学生力学概念研究的内容

运动学概念研究

运动学体系是整个牛顿力学的基础,而时间、位移、速度、加速度又是运动学体系的基本概念,因此学生对于这几个概念的理解会直接影响其牛顿力学的学习。华盛顿大学教育研究小组从80年代初就开始研究学生对于运动学概念的理解。他们主要通过实验创设问题情景,然后结合访谈考察学生对于加速度、速度概念的理解。首先,选取一些学生,他们都学过速度、加速度的概念,并都知道速度、加速度的公式;其次,让他们观察实验:将两个相同的小球放在两个倾斜度相同的“U”槽轨道上(注:两个轨道的形状并不一样,从而导致两个小球具有不同的加速度),球A放在球B后几厘米处,先无初速释放球A,当球A向下运动了几厘米后(仍处于球B后方),会碰到一个触动开关,从而无初速释放球B,两个球会同时到达轨道底端并具有相同的末速度;最后,对学生进行访谈:两个小球加速度大小是否相同。研究发现学生存在着很多关于运动学概念的错误理解,可归结为以下三种类型:(1)思维定势,有学生认为两个小球具有相同的加速度,“因为两个轨道具有相同的倾斜度,所以两个球的加速度相同。”这主要是因为学生经过长期常规斜面问题训练形成了思维定势,从而忽略了“U”槽轨道的特殊形状。(2)速度与加速度不分,有学生认为A、B两个球或许具有相同的加速度,“因为相对于球B,球A在较长的时间内,运动了较长的距离”;也有学生认为球A具有较大的加速度,“从球B开始运动算起,在相同的时间内,球A的运动距离更长”;(3)缺乏公式运用能力,有学生认为球B具有较大的加速度,“因为球B在较短位移内,其速度变化和球A是一样的”,这些学生对加速度有一定的感性认识,但不会应用所学加速度公式进行推理。

牛顿运动定律的研究

牛顿第一、第二、第三定律构成的牛顿运动定律,毫无疑问是整个牛顿力学体系的核心。研究者也非常关注对牛顿运动定律的考察。Halloun和Hestenes(1985)在前人研究的基础上设计了力的诊断测试量表(Mechanics Diagnostictest,简称MD),其主要作用是全面、系统的考察学生对牛顿力学概念的定性理解,并不涉及公式运算。早期的MD是开放性问题,要求学生写出答案及其原因,然后研究者对错误答案及原因进行总结、归纳、分类,并最终使其成为MD选择题的一些选项,其实这些错误答案是学生前概念最真实的反映。所谓前概念(preconception)是指学生长期日常生活经验的积累以及辨别式学习而形成的对事物非本质的认识,也称相异概念或大众观念。Hestenes等人于1992年推出了MD的改进版:力的概念调查表(Force Concept lnventory,・简称FCl),FCI共有29个题目(新版本有30题),每个题目5个选项,其中有16个题目针对牛顿运动定律。Thornton和Sokoloff于1997年设计了力和运动概念评价量表(The Force And Motion Conceputal Evalution,简称FMCE),相对于FCI,FMCE有几点变化:增加了题目,FMCE共有43个题目,其中有36个题目针对牛顿运动定律;每个题目有8个选项,减低了误选的可能性;增加了考察方式,有些题目以s-t、v-t、a-t图像方式呈现。

牛顿第一定律的研究

Clement于1982设计了三个问题,分别是:单摆问题、抛硬币问题、火箭轨迹问题,这些题目经过修改后被FCI所采用。它们只是定量地考察学生,并不涉及公式运用及数学计算。其中抛硬币问题极具代表性,实验要求被试在忽略空气阻力条件下,用箭头表示硬币被抛向空中时,上升和下落阶段各自的受力情况。研究发现“运动意味着力”这一与牛顿第一定律相矛盾的前概念广泛存在于学生头脑中,其主要表现集中在以下两个方面:(1)运动方向上肯定有力的存在,有些学生认为上抛的硬币受到两个力:一个是重力,一个是抛力。上抛时抛力大于重力,下降时重力大于抛力;(2)随着速度的变化,力是会“耗散”或者“恢复”的,有些学生认为力开始作用的瞬间很“强”(当它离开手时),它随着球的上升而逐渐减弱,运动停止时(瞬间),力也就消失了,然后引力使球降落。

牛顿第二定律的研究

FCI对于牛顿第二定律的考察,不是局限于学生对于公式F=ma的记忆,更重要的是考察学生在具体情景中的应用。如:一女士以恒定的的力推一个箱子,箱子以恒定速率V在水平地板上运动,当该女士用两倍的水平推力推箱子,则箱子会怎样运动?在测试中发现很多学生认为箱子将会以2V的速率运动,即速度和施加的力成正比。这主要是由日常生活经验造成的,即“越用力推物体,物体就走得越快”,使得学生特别容易混淆速度与加速度的概念。

牛顿第三定律的研究

FCI和FMCE的量表中有很多碰撞类的题目考察学生对于牛顿第三定律的理解,可归结为以下三种类型:第一、一辆大卡车和一辆小汽车相互碰撞,它们之间相互作用力的大小;第二、小汽车推着熄火的大卡车向前加速或匀速运动时,它们之间相互作用力的大小;第三、两个质量不一样的人坐在椅子上,然后各自朝对方的椅子用力,在推椅子的动作进行及两学生仍然接触期间,它们之间相互作用力的大小。学生的错误理解可以总结和归纳为两个方面:(1) “冲突原则”,学生把相互作用力看成是“两个相反力的斗争”,且越有力的物体施加的力越大,这里“越有力”可以看作“体积越大”“质量越大”或者“更积极”。(2)力的叠加与作用力、反作用力相混淆,尤其在第二类题目中,很多学生认为:“小汽车推着大卡车加速运动,那么小汽车对大客车施加的力肯定大于大卡车对小汽车施加的力。”

运动的合成与分解

平抛运动是牛顿力学中最重要的一种曲线运动模型,对平抛运动的研究方法是运动合成与分解的典范,因此通过对学生平抛运动理解的考察,可以了解学生对于运动的合成与分解的掌握情况。FCI中考察学生对于平抛运动理解的题目主要有两类:

(1)常规平抛运动:不考虑空气阻力,正在飞行中的飞机丢下物体的运动轨迹。学生错误理解主要有以下两个方面:(1)参考系选择错误,有些学生选择了从飞机上观察小球运动;(2)没有建立惯性的概念,有些学生认为小球离开飞机就没有水平速度了。

(2)类平抛运动,如下题:

一枚火箭在外部空间由“a”点横向漂移至“b”点。该火箭不受任何外力作用。在“b”点时,火箭的引擎发动并产生一恒定的推力(作用在火箭上的推力),方向与直线“ab”成直角。该恒定推力一直保持到空间中一位置“c”(图1)。问下列哪一路径最能表示火箭在“b”与“c”间的路径?(图2)

类平抛运动的理解需要以平抛运动作为基础,因此学生的错误率比较高。选择错误答案的原因主要集中在以下几个方面:(1)A选项,力具有“耗散性”:力刚开始很大,则物体的运动轨迹就靠近力的方向,随着力逐渐减小,物体的运动就偏向水平方向;(2)B选项,“最后的力决定运动”:物体只受到一个力的作用,那么物体就会沿着所受力方向运动;(3)C选项,没有区分“持续力”和“瞬时力”;(3)D选项,“力具有延迟性”:施加的恒定推力会在水平运动一段时间后才显现出来。

重力概念的研究

Watts(1982)通过访谈一些中学生,发现了学生关于重力的几个错误概念:(1)重力的作用需要媒介;(2)没有空气的地方就没有重力:(3)重力随着高度增加而增加;(4)重力从物体下落时开始对物体作用,当物体静止在地面上时,就没有重力;(5)物体越重下落越快。研究表明随着年龄的增大,知识的积累,学生持有这些错误概念的比例不断降低。然而这些错误概念真的已经被转变了,还只是被隐藏起来了?FCI中为了考察学生对于“忽略空气阻力,轻重物体下落速度一样”这一概念的理解,重现了伽利略的比萨斜塔实验:“忽略空气阻力情况下,轻重两个小球从同样高度落下,是否同时落地?”,同时从不同的角度提出了新的问题:“让这两个小球以同样的速度从水平桌面上滚下去,它们落地点离桌底的距离之间关系”。两个问题的正确率有着天壤之别,第一个题目正确率非常高,而在第二个题目中,很多学生认为重的物体落地点离桌底远,甚至有学生认为其距离与质量成正比。看来,“物体越重下落越快”这个自亚里士多德开始数千年被人们信奉为“真理”的误解,今天仍然普遍隐藏在学生的头脑中。

3 国外学生力学概念研究的结果

前概念、相异概念广泛存在于学生头脑中,并严重影响物理概念的学习

大量研究发现,学生或许可以熟记许多科学名词、科学事实、科学理论等,但是对于这些名词、事实、理论和概念并没有真正理解,这是由于学生在学习物理之前,通过日常生活的种种渠道和自身的实践,对客观世界中的各种实物己形成了前概念。Heuvelen(1991)认为“拥有前概念的学生,他们看到的只是弹簧、绳子、斜面、滑车等问题中的实物,而不能像物理学家那样看到问题背后的物理概念。由于不能对问题进行定量的分析,更不用说把物理过程用数学公式表达出来,学生只好不停的使用公式”。Hestenes、Wells(1992)等人也意识到“学生很多关于力学方面的前概念与牛顿力学概念是相矛盾的,这些前概念的存在使得学生听不懂物理课,从而导致他们强行记忆一些没有关联的片段,做着没有意义的作业,所以很多学生有厌学情绪”。

前概念与科学概念并存于学生的头脑中

有研究者做了这样的实验:一个有点像干冰气垫器的那样圆盘,在几乎是无摩擦的玻璃台面上不停的运动。通过软管打进空气,打进空气的数量和方向可由键盘控制。然后要求学生用这种盘――桌――管装置模拟电子游戏机进行比赛:“使圆盘在桌面上以稳定的速度沿直线运动――圆盘出发后不加速也不减速”。测试的对象是即将进入名牌大学就读的优秀高中毕业生。很多被测在实验中为了维持圆盘的运动都在不停的按着键盘,但在游戏后的访谈中发现大部分的被试都知道圆盘的运动不需要力的维持。这说明学生解决问题存在两种水平,在直觉判断上使用错误概念,而在逻辑推理水平上使用正确的概念体系,即在学生头脑中存在两套系统并存的情况。Goldberg和Bendall(1995)认为:“传统教学中,学生都把记忆性的、以公式为中心的问题解决方法作为学习物理的正统工具,他们缺少面对陌生环境利用所学的概念和定律进行推理的能力。因为他们的知识只是由零散的、少量的事实和公式组成,当遇到陌生的环境时,学生外显的还是他们的前概念。”

传统教学很难转变学生的前概念,需要新的教学策略

Hestenes、Wells等(1992)对传统讲座教学方式下1500多名中学生以及500多名大学生进行了FCI测试,发现学生前后测试的分数提高并不明显,同时还发现:前概念的转变与学生的数学基础没有明显关系,所在测试班级教师水平(达到合格以上)与测试的结果也没有必然的联系。有研究甚至发现,传统教学之前有34.9%的学生认为恒定的力产生恒定的速度,但是学完课程后这部分的人数却增加到了59.9%,也就是说,传统教学没有帮助学生理解概念,反而起了反作用。

国外研究者认为:“尽管教育者目前对于学生在各个学术和非学术领域所拥有的前概念知识以及怎样在教学中与这些知识互动已经有了很多好的想法,但是,研究表明这些已有的概念在传统教学中很难发生改变。这些研究发现向我们揭示了一个令人失望的局面,也就是说教学常常不能使学生放弃原有的知识、观念而形成我们期望他们具备的知识。这一结果对教学的理论和实践都提出了挑战,促进我们重新评定教学目标、设计新的教学策略”。有研究发现:“体验到认知冲突是影响概念转变的重要因素”,因此有效的概念教学必须要让学生产生认知冲突:首先创设一定的情境,使学生对一些现象所持的观念明朗化,然后直接对其进行挑战,从而引起认知冲突,解决冲突的尝试为随后的学习提供前提。同时有研究者认为:“当力学的精确数学表达式被看作教学唯一重点时,公式的死记硬背式学习就常常取代了对概念的理解,最好的预防措施就是教没有数学的物理,至少在教学过程的初期应这样”。

参考文献:

[1]阎金铎,田世昆.中学物理教学概论[M].北京:高等教育出版社.2003,94.

[2]LA.Halloun,D.Hestenes.The initionkno wledge state of college physics students[J].Am.J.Phys,1985,53(11):1043-1048.

[3]D.Hestenes,M.WeHs,G.Swackhamer.Force Concept lnventory[J].The Physics Teacher,1992,3(30):141-158.

[4]R..R.Sokoloff.“Assessing student learning of Newton’slaws:The forceand motion conceputal evalution and the evaluation Of active learning laboratory and lecturecurricula”[J].Am.[J].Phys,1998,66(4):338-351.

[5]J.Clement.students' preconception in introductory mechanics [J].Am.J.Phys,1982,50(1):66-71.

[6] don’t take it for grantedI[J].Phys Educ,1982,17:116-121.

[7]]A.V.Heuvelen,・Learning to think like aphysicist:A review of research-based instructionalstrategies[J].Am.J.Phys,1991,59(10):891-897.

[8]罗莎林德.德赖弗等著,胡诊林,义译.科学概念――学生是怎样理解的[M].河南:河南教育出版社.1985,99―107.

20 865151
");